Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/91591
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIlyasov, B. G.en
dc.contributor.authorMakarova, E. A.en
dc.contributor.authorZakieva, E. S.en
dc.contributor.authorGizdatullina, E. S.en
dc.contributor.authorИльясов, Б. Г.ru
dc.contributor.authorМакарова, Е. А.ru
dc.contributor.authorЗакиева, Е. Ш.ru
dc.contributor.authorГиздатуллина, Э. С.ru
dc.date.accessioned2020-10-12T09:49:41Z-
dc.date.available2020-10-12T09:49:41Z-
dc.date.issued2019-
dc.identifier.citationОценка данных о доходах населения в региональном разрезе методом главных компонент / Б. Г. Ильясов, Е. А. Макарова, Е. Ш. Закиева, Э. С. Гиздатуллина. — DOI 10.17059/2019-2-22. — Текст : электронный // Экономика региона. — 2019. — Том 15, выпуск 2. — С. 601-617.ru
dc.identifier.issn2411-1406online
dc.identifier.issn2072-6414print
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85071686879&doi=10.17059%2f2019-2-22&partnerID=40&md5=c95ce1e9890d3186eb20faaf32cc9f5fm
dc.identifier.otherWOS:000472642000022wos
dc.identifier.urihttp://elar.urfu.ru/handle/10995/91591-
dc.description.abstractThe article focuses on solving the task of analysing statistical data on households' income and their main components in absolute and relative units. We took into account a number of additional indicators, including social transfers, and applied the principle component method. The analysis' purpose was to identify patterns of «clustering». The first step was to identify clusters of the Russian Federation regions, which vary in terms of population's revenue structure taking into account the volumes of subsidies and subventions. The second step was to determine the generalized characteristics of the revealed clusters and their representation in a form of clustering rules. We have shown that the cluster structure of the households sector at the regional level is sufficiently polarized. We have revealed the small clusters of regions characterized by a high level of households' monetary income and relatively large population (e. g. Moscow, Khanty-Mansi Autonomous Okrug). Alternatively, there are sufficiently inhabited clusters of regions with both a considerable volume of non-monetary income in a form of food combined and the low or average level of monetary income and small positive dynamics of population (Bryansk, Kursk Oblasts). On the other hand, in the regions with a relatively low monetary income, the revenue structure includes a high share of natural supplies in the form of food (for example, Republic of Dagestan and Republic of Ingushetia). Moreover, in the regions with a high monetary income, there is a small share of the raised funds and spent savings in revenue structure (Yamalo-Nenets Autonomous Okrug and others). We have constructed clusters of regions and established their quantity, structure and generalized characteristics presented in the form of clustering rules. We used that data for defining structural and parametrical characteristics when developing a dynamic model of the households sector and the module of intellectual management. These dynamic model and the module became a part of the system of imitating dynamic modelling and intellectual management (SIDMIM) of population income generation. The application of SIDMIM involves scenario studies for decision-making in managing the population income at the regional level considering differentiation in the income level. © 2019 Institute of Economics, Ural Branch of the Russian Academy of Sciences. All rights reserved.en
dc.description.abstractПроведен анализ статистических данных о доходах домохозяйств регионов России. Выявлены малочисленные кластеры регионов, характеризующиеся высоким уровнем денежных доходов домохозяйств при достаточно высокой численности населения. Сформированы достаточно населенные кластеры регионов, характеризующиеся значительным объемом денежных доходов в виде натуральных поступлений продуктов питания при низком и среднем уровне денежных доходов и малой положительной динамике численности населения.ru
dc.description.sponsorshipThe article has been supported by Russian Foundation for Basic Research (the project No 17-08-01155).en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherInstitute of Economics, Ural Branch of the Russian Academy of Sciencesen
dc.publisherИнститут экономики Уральского отделения РАНru
dc.relation.ispartofЭкономика региона. 2019. Том 15, выпуск 2ru
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.subjectCLUSTERINGen
dc.subjectCLUSTERS OF REGIONSen
dc.subjectCOEFFICIENT OF INFORMATION CONTENTen
dc.subjectIMITATING DYNAMIC MODELen
dc.subjectINTEGRATED SIGNen
dc.subjectPOPULATION INCOMEen
dc.subjectPRINCIPAL COMPONENT METHODen
dc.subjectSAMPLEen
dc.subjectSCATTERPLOTen
dc.subjectWEIGHT COEFFICIENTen
dc.titleОценка данных о доходах населения в региональном разрезе методом главных компонентru
dc.title.alternativeAnalysing the data on incomes in the regional context by the principal component methoden
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.17059/2019-2-22-
dc.identifier.scopus85071686879-
local.description.firstpage601-
local.description.lastpage617-
local.issue2-
local.volume15-
dc.identifier.wos000472642000022-
local.identifier.eid2-s2.0-85071686879-
local.fund.rffi17-08-01155-
Appears in Collections:Economy of Regions

Files in This Item:
File Description SizeFormat 
2019_15_2_022.pdf1,38 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.