Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/90741
Название: | On one approach to solving nonhomogeneous partial differential equations |
Авторы: | Rubina, L. I. UVyanov, O. N. |
Дата публикации: | 2017 |
Издатель: | Udmurt State University |
Библиографическое описание: | Rubina, L. I. On one approach to solving nonhomogeneous partial differential equations / L. I. Rubina, O. N. UVyanov. — DOI 10.20537/vm170306 // Vestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp'yuternye Nauki. — 2017. — Vol. 3. — Iss. 27. — P. 355-364. |
Аннотация: | An approach to obtaining exact solutions for nonhomogeneous partial differential equations (PDEs) is suggested. It is shown that if the right-hand side of the equation specifies the level surface of a solution of the equation, then, in this approach, the search of solutions of considered nonhomogeneous differential equations is reduced to solving ordinary differential equation (ODE). Otherwise, searching for solutions of the equation leads to solving the system of ODEs. Obtaining a system of ODEs relies on the presence of the first derivatives of the sought function in the equation under consideration. For PDEs, which do not explicitly contain first derivatives of the sought function, substitution providing such terms in the equation is proposed. In order to reduce the original equation containing the first derivative of the sought function to the system of ODEs, the associated system of two PDEs is considered. The first equation of the system contains in the left-hand side only first order partial derivatives, selected from the original equation, and in the right-hand side it contains an arbitrary function, the argument of which is the sought unknown function. The second equation contains terms of the original equation that are not included in the first equation of the system and the right-hand side of the first equation in the system created. Solving the original equation is reduced to finding the solutions of the first equation of the resulting system of equations, which turns the second equation of the system into identity. It has been possible to find such solution using extended system of equations for characteristics of the first equation and the arbitrariness in the choice of function from the right-hand side of the equation. The described approach is applied to obtain some exact solutions of the Poisson equation, Monge-Ampere equation and convection-diffusion equation. |
Ключевые слова: | EXACT SOLUTIONS NONHOMOGENEOUS PARTIAL DIFFERENTIAL EQUATIONS ODE SYSTEMS OF ODES |
URI: | http://elar.urfu.ru/handle/10995/90741 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор РИНЦ: | 30267246 |
Идентификатор SCOPUS: | 85035794494 |
Идентификатор WOS: | 000467760800006 |
Идентификатор PURE: | 6163014 |
ISSN: | 1994-9197 |
DOI: | 10.20537/vm170306 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.20537-vm170306.pdf | 271,99 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.