Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90706
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorSubbotin, Y. N.en
dc.contributor.authorChernykh, N. I.en
dc.date.accessioned2020-09-29T09:48:28Z-
dc.date.available2020-09-29T09:48:28Z-
dc.date.issued2019-
dc.identifier.citationSubbotin, Y. N. A numerical method for the solution of boundary value problems for a homogeneous equation with the squared Laplace operator with the use of interpolation wavelets / Y. N. Subbotin, N. I. Chernykh. — DOI 10.21538/0134-4889-2019-25-2-198-204 // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2019. — Vol. 2. — Iss. 25. — P. 198-204.en
dc.identifier.issn0134-4889-
dc.identifier.otherhttp://journal.imm.uran.ru/sites/default/files/content/25_2/TrIMMUrORAN_2019_2_p198_L.pdfpdf
dc.identifier.other1good_DOI
dc.identifier.otherf11d7c45-b49d-4ddf-84ea-73efa39521e6pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85078495428m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90706-
dc.description.abstractWe present an effective numerical method for the recovery of biharmonic functions in a disk from continuous boundary values of these functions and of their normal derivatives using wavelets that are harmonic in the disk and interpolating on its boundary on dyadic rational grids. The expansions of solutions of boundary value problems into cumbersome interpolation series in the wavelet basis are folded into sequences of their partial sums that are compactly presentable in the subspace bases of the corresponding multiresolution analysis (MRA) of Hardy spaces h1(K) of functions harmonic in the disk. Effective estimates are obtained for the approximation of solutions by partial sums of any order in terms of the best approximation of the boundary functions by trigonometric polynomials of a slightly smaller order. As a result, to provide the required accuracy of the representation of the unknown biharmonic functions, one can choose in advance the scaling parameter of the corresponding MRA subspace such that the interpolation projection to this space defines a simple analytic representation of the corresponding partial sums of interpolation series in terms of appropriate compressions and shifts of the scaling functions, skipping complicated iterative procedures for the numerical construction of the coefficients of expansion of the boundary functions into series in interpolation wavelets. We write solutions using interpolation and interpolation-orthogonal wavelets based on modified Meyer wavelets, the last are convenient to apply if the boundary values of the boundary value problem are given approximately, for example, are found experimentally. In this case, one can employ the usual, well-known procedures of discrete orthogonal wavelet transformations for the analysis and refinement (correction) of the boundary values. © 2019 Trudy Instituta Matematiki i Mekhaniki UrO RAN. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherKrasovskii Institute of Mathematics and Mechanicsen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceTrudy Instituta Matematiki i Mekhaniki UrO RANen
dc.subjectBIHARMONIC FUNCTIONen
dc.subjectBOUNDARY VALUE PROBLEMSen
dc.subjectINTERPOLATION WAVELETSen
dc.subjectMULTIRESOLUTION ANALYSIS (MRA)en
dc.titleA numerical method for the solution of boundary value problems for a homogeneous equation with the squared Laplace operator with the use of interpolation waveletsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi38071616-
dc.identifier.doi10.21538/0134-4889-2019-25-2-198-204-
dc.identifier.scopus85078495428-
local.affiliationKrasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federationen
local.affiliationUral Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeSubbotin, Y.N., Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federationru
local.contributor.employeeChernykh, N.I., Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation, Ural Federal University, Yekaterinburg, 620002, Russian Federationru
local.description.firstpage198-
local.description.lastpage204-
local.issue25-
local.volume2-
dc.identifier.wos000485177500018-
local.identifier.pure10045879-
local.identifier.eid2-s2.0-85078495428-
local.identifier.wosWOS:000485177500018-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.21538-0134-4889-2019-25-2-198-204.pdf184,4 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.