Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90693
Название: Survey on software tools that implement deep learning algorithms on intel/x86 and IBM/Power8/Power9 platforms
Авторы: Shaikhislamov, D.
Sozykin, A.
Voevodin, V.
Дата публикации: 2019
Издатель: South Ural State University, Publishing Center
Библиографическое описание: Shaikhislamov, D. Survey on software tools that implement deep learning algorithms on intel/x86 and IBM/Power8/Power9 platforms / D. Shaikhislamov, A. Sozykin, V. Voevodin. — DOI 10.14529/jsfi190404 // Supercomputing Frontiers and Innovations. — 2019. — Vol. 4. — Iss. 6. — P. 57-83.
Аннотация: Neural networks are becoming more and more popular in scientific field and in the industry. It is mostly because new solutions using neural networks show state-of-the-art results in the domains previously occupied by traditional methods, eg. computer vision, speech recognition etc. But to get these results neural networks become progressively more complex, thus needing a lot more training. The training of neural networks today can take weeks. This problems can be solved by parallelization of the neural networks training and using modern clusters and supercomputers, which can significantly reduce the learning time. Today, a faster training for data scientist is essential, because it allows to get the results faster to make the next decision. In this paper we provide an overview of distributed learning provided by the popular modern deep learning frameworks, both in terms of provided functionality and performance. We consider multiple hardware choices: training on multiple GPUs and multiple computing nodes. © The Authors 2019.
Ключевые слова: DEEP LEARNING FRAMEWORKS
DISTRIBUTED TRAINING.
HPC
NEURAL NETWORKS
DEEP NEURAL NETWORKS
LEARNING ALGORITHMS
NEURAL NETWORKS
PROGRAM PROCESSORS
SPEECH RECOGNITION
SUPERCOMPUTERS
COMPUTING NODES
DISTRIBUTED LEARNING
LEARNING FRAMEWORKS
NEURAL NETWORKS TRAININGS
NEW SOLUTIONS
PARALLELIZATIONS
SCIENTIFIC FIELDS
STATE OF THE ART
DEEP LEARNING
URI: http://elar.urfu.ru/handle/10995/90693
Условия доступа: info:eu-repo/semantics/openAccess
cc-by
Идентификатор РИНЦ: 42316501
Идентификатор SCOPUS: 85079862860
Идентификатор PURE: 12222306
ISSN: 2409-6008
DOI: 10.14529/jsfi190404
Сведения о поддержке: Council on grants of the President of the Russian Federation: MK-2330.2019.9
You can use a special version of Caffe, NVCaffe, which is supported by NVidia. This version was created specifically for the use of several GPUs. User instructions can be found in [35].
For NVidia, MXNet is supported by Nvidia Cloud. MXNet also has support for CUDA and CuDNN.
The results described in this paper were obtained with the financial support of the grant from the Russian Federation President Fund (MK-2330.2019.9).
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.14529-jsfi190404.pdf1,06 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.