Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/90667
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Makhnev, A. A. | en |
dc.contributor.author | Isakova, M. M. | en |
dc.contributor.author | Nirova, M. S. | en |
dc.date.accessioned | 2020-09-29T09:48:19Z | - |
dc.date.available | 2020-09-29T09:48:19Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Makhnev, A. A. Distance-regular graphs with intersection array / A. A. Makhnev, M. M. Isakova, M. S. Nirova. — DOI 10.33048/SEMI.2019.16.087 // Siberian Electronic Mathematical Reports. — 2019. — Iss. 16. — P. 1254�1259-. | en |
dc.identifier.issn | 1813-3304 | - |
dc.identifier.other | http://www.mathnet.ru/php/getFT.phtml?jrnid=semr&paperid=1127&what=fullt&option_lang=eng | |
dc.identifier.other | 1 | good_DOI |
dc.identifier.other | 008494a2-dce9-4337-b64f-93198640271e | pure_uuid |
dc.identifier.other | http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85083249678 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/90667 | - |
dc.description.abstract | Distance regular graphs Γ of diameter 3 for which the graphs Γ2 and Γ3 are strongly regular, studied by M.S. Nirova. For Q-polynomial graphs with intersection arrays (69; 56; 10; 1; 14; 60) and (119; 100; 15; 1; 20; 105} the graph Γ3 is strongly regular and does not contain triangles. Automorphisms of graphs with these intersection arrays were found by A.A. Makhnev, M.S. Nirova and M.M. Isakova, A.A. Makhnev, respectively. The graph Γ with the intersection array (74; 54; 15; 1; 9; 60) also is Q-polynomial, and Γ3 is a strongly regular graph with parameters (630; 111; 12; 21). It is proved in the paper that graphs with intersection arrays (69; 56; 10; 1; 14; 60), (74; 54; 15; 1; 9; 60) and (119; 100; 15; 1; 20; 105) do not exist. © 2019 Sobolev Institute of Mathematics. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | ru | en |
dc.publisher | Sobolev Institute of Mathematics | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Siberian Electronic Mathematical Reports | en |
dc.subject | DISTANCE-REGULAR GRAPH | en |
dc.subject | TRIPLE INTERSECTION NUMBERS | en |
dc.title | Distance-regular graphs with intersection array | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 42735129 | - |
dc.identifier.doi | 10.33048/SEMI.2019.16.087 | - |
dc.identifier.scopus | 85083249678 | - |
local.affiliation | N.N. Krasovsky Institute of Mathematics and Meckhanics, 16, S. Kovalevskoy str., Ekaterinburg, 620990, Russian Federation | en |
local.affiliation | Ural Federal University, 19, Mira str., Ekaterinburg, 620002, Russian Federation | en |
local.affiliation | Kabardino-Balkarian State University, 175, Chernyshevsky str., Nalchik, 360004, Russian Federation | en |
local.contributor.employee | Makhnev, A.A., N.N. Krasovsky Institute of Mathematics and Meckhanics, 16, S. Kovalevskoy str., Ekaterinburg, 620990, Russian Federation, Ural Federal University, 19, Mira str., Ekaterinburg, 620002, Russian Federation | ru |
local.contributor.employee | Isakova, M.M., Kabardino-Balkarian State University, 175, Chernyshevsky str., Nalchik, 360004, Russian Federation | ru |
local.contributor.employee | Nirova, M.S., Kabardino-Balkarian State University, 175, Chernyshevsky str., Nalchik, 360004, Russian Federation | ru |
local.description.firstpage | 1254�1259 | - |
local.issue | 16 | - |
dc.identifier.wos | 000486531600001 | - |
local.identifier.pure | 10787093 | - |
local.identifier.eid | 2-s2.0-85083249678 | - |
local.identifier.wos | WOS:000486531600001 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.33048-SEMI.2019.16.087.pdf | 179,65 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.