Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90587
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorNeumayer, S. M.en
dc.contributor.authorJesse, S.en
dc.contributor.authorVelarde, G.en
dc.contributor.authorKholkin, A. L.en
dc.contributor.authorKravchenko, I.en
dc.contributor.authorMartin, L. W.en
dc.contributor.authorBalke, N.en
dc.contributor.authorMaksymovych, P.en
dc.date.accessioned2020-09-29T09:48:00Z-
dc.date.available2020-09-29T09:48:00Z-
dc.date.issued2020-
dc.identifier.citationTo switch or not to switch - a machine learning approach for ferroelectricity / S. M. Neumayer, S. Jesse, G. Velarde, A. L. Kholkin, et al. . — DOI 10.1039/c9na00731h // Nanoscale Advances. — 2020. — Vol. 5. — Iss. 2. — P. 2063-2072.en
dc.identifier.issn2516-0230-
dc.identifier.otherhttps://pubs.rsc.org/en/content/articlepdf/2020/na/c9na00731hpdf
dc.identifier.other1good_DOI
dc.identifier.other4d66c56f-2c5a-46ff-b644-e547c06d15capure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85085705968m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90587-
dc.description.abstractWith the advent of increasingly elaborate experimental techniques in physics, chemistry and materials sciences, measured data are becoming bigger and more complex. The observables are typically a function of several stimuli resulting in multidimensional data sets spanning a range of experimental parameters. As an example, a common approach to study ferroelectric switching is to observe effects of applied electric field, but switching can also be enacted by pressure and is influenced by strain fields, material composition, temperature, time,etc.Moreover, the parameters are usually interdependent, so that their decoupling toward univariate measurements or analysis may not be straightforward. On the other hand, both explicit and hidden parameters provide an opportunity to gain deeper insight into the measured properties, provided there exists a well-defined path to capture and analyze such data. Here, we introduce a new, two-dimensional approach to represent hysteretic response of a material system to applied electric field. Utilizing ferroelectric polarization as a model hysteretic property, we demonstrate how explicit consideration of electromechanical response to two rather than one control voltages enables significantly more transparent and robust interpretation of observed hysteresis, such as differentiating between charge trapping and ferroelectricity. Furthermore, we demonstrate how the new data representation readily fits into a variety of machine-learning methodologies, from unsupervised classification of the origins of hysteretic responsevialinear clustering algorithms to neural-network-based inference of the sample temperature based on the specific morphology of hysteresis. © The Royal Society of Chemistry 2020.en
dc.description.sponsorshipNational Science Foundation, NSF: DMR-1708615en
dc.description.sponsorshipBasic Energy Sciences, BESen
dc.description.sponsorshipArmy Research Office, ARO: W911NF-14-1-0104en
dc.description.sponsorshipExperiments on PZT, data analysis and manuscript preparation were supported by the Division of Materials Science and Engineering, Basic Energy Sciences, US Department of Energy (S. N., N. B., P. M.). Experiments were conducted at and supported by (S. J.) the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. S. M. N. would like to thank Katia Gallo and Mohammad Amin Baghban for providing the lithium niobate sample. G. V. acknowledges support from the National Science Foundation under grant DMR-1708615. L. W. M. acknowledges support from the Army Research Office under grant W911NF-14-1-0104. Part of this work was developed within the scope of the project CICECO-Aveiro Institute of Materials, refs. UIDB/50011/2020 & UIDP/ 50011/2020, nanced by national funds through the FCT/MEC.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherRoyal Society of Chemistryen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.sourceNanoscale Advancesen
dc.subjectCHARGE TRAPPINGen
dc.subjectCLUSTERING ALGORITHMSen
dc.subjectELECTRIC FIELDSen
dc.subjectFERROELECTRICITYen
dc.subjectHYSTERESISen
dc.subjectINFERENCE ENGINESen
dc.subjectELECTROMECHANICAL RESPONSEen
dc.subjectEXPERIMENTAL PARAMETERSen
dc.subjectEXPERIMENTAL TECHNIQUESen
dc.subjectFERROELECTRIC POLARIZATIONen
dc.subjectFERROELECTRIC SWITCHINGen
dc.subjectMACHINE LEARNING APPROACHESen
dc.subjectMULTI-DIMENSIONAL DATASETSen
dc.subjectUNSUPERVISED CLASSIFICATIONen
dc.subjectMACHINE LEARNINGen
dc.titleTo switch or not to switch - a machine learning approach for ferroelectricityen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1039/c9na00731h-
dc.identifier.scopus85085705968-
local.affiliationCenter for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United Statesen
local.affiliationDepartment of Materials Science and Engineering, University of California, Berkeley, CA 94720, United Statesen
local.affiliationMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United Statesen
local.affiliationDepartment of Physics & CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugalen
local.affiliationSchool of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federationen
local.contributor.employeeNeumayer, S.M., Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United Statesru
local.contributor.employeeJesse, S., Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United Statesru
local.contributor.employeeVelarde, G., Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, United States, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United Statesru
local.contributor.employeeKholkin, A.L., Department of Physics & CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal, School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federationru
local.contributor.employeeKravchenko, I., Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United Statesru
local.contributor.employeeMartin, L.W., Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, United States, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United Statesru
local.contributor.employeeBalke, N., Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United Statesru
local.contributor.employeeMaksymovych, P., Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United Statesru
local.description.firstpage2063-
local.description.lastpage2072-
local.issue2-
local.volume5-
dc.identifier.wos000536705700029-
local.identifier.pure13146745-
local.identifier.eid2-s2.0-85085705968-
local.identifier.wosWOS:000536705700029-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1039-c9na00731h.pdf1,15 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.