Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90493
Название: Some new Fourier inequalities for unbounded orthogonal systems in Lorentz–Zygmund spaces
Авторы: Akishev, G.
Lukkassen, D.
Persson, L. E.
Дата публикации: 2020
Издатель: Springer
Библиографическое описание: Akishev, G. Some new Fourier inequalities for unbounded orthogonal systems in Lorentz–Zygmund spaces / G. Akishev, D. Lukkassen, L. E. Persson. — DOI 10.1186/s13660-020-02344-6 // Journal of Inequalities and Applications. — 2020. — Vol. 1. — Iss. 2020. — 77.
Аннотация: In this paper we prove some essential complements of the paper (J. Inequal. Appl. 2019:171, 2019) on the same theme. We prove some new Fourier inequalities in the case of the Lorentz–Zygmund function spaces Lq , r(log L) α involved and in the case with an unbounded orthonormal system. More exactly, in this paper we prove and discuss some new Fourier inequalities of this type for the limit case L2 , r(log L) α, which could not be proved with the techniques used in the paper (J. Inequal. Appl. 2019:171, 2019). © 2020, The Author(s).
Ключевые слова: FOURIER COEFFICIENTS
FOURIER SERIES
INEQUALITIES
LORENTZ–ZYGMUND SPACES
UNBOUNDED ORTHOGONAL SYSTEMS
URI: http://elar.urfu.ru/handle/10995/90493
Условия доступа: info:eu-repo/semantics/openAccess
cc-by
Идентификатор SCOPUS: 85082323031
Идентификатор WOS: 000520832200001
Идентификатор PURE: 12436462
ISSN: 1025-5834
DOI: 10.1186/s13660-020-02344-6
Сведения о поддержке: The first author is grateful for the support of this work given by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University). We thank the referees for some good suggestions, which have improved this final version of our paper.
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1186-s13660-020-02344-6.pdf1,41 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.