Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/90476
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Bagno, A. L. | en |
dc.contributor.author | Tarasyev, A. M. | en |
dc.date.accessioned | 2020-09-29T09:47:30Z | - |
dc.date.available | 2020-09-29T09:47:30Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Bagno, A. L. Numerical methods for construction of value functions in optimal control problems on an infinite horizon / A. L. Bagno, A. M. Tarasyev. — DOI 10.20537/2226-3594-2019-53-02 // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. — 2019. — Iss. 53. — P. 15-26. | en |
dc.identifier.issn | 2226-3594 | - |
dc.identifier.other | http://www.mathnet.ru/php/getFT.phtml?jrnid=iimi&paperid=367&what=fullt&option_lang=eng | |
dc.identifier.other | 1 | good_DOI |
dc.identifier.other | ef148902-4f88-4910-8cd2-e86aeb32d51a | pure_uuid |
dc.identifier.other | http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85079161029 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/90476 | - |
dc.description.abstract | This article deals with the optimal control problem on an infinite horizon, the quality functional of which is contained in the integrand index and the discounting factor. A special feature of this formulation of the problem is the assumption of the possible unboundedness of the integrand index. The problem reduces to an equivalent optimal control problem with a stationary value function as a generalized (minimax, viscosity) solution of the Hamilton–Jacobi equation satisfying the Hölder condition and the condition of linear growth. The article describes the backward procedure on an infinite horizon. It is the method of numerical approximation of the generalized solution of the Hamilton–Jacobi equation. The main result of the article is an estimate of the accuracy of approximation of a backward procedure for solving the original problem. Problems of the analyzed type are related to modeling processes of economic growth and to problems of stabilizing dynamic systems. The results obtained can be used to construct numerical finite-difference schemes for calculating the value function of optimal control problems or differential games. © 2019 Udmurt State University. All right reserved. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | ru | en |
dc.publisher | Udmurt State University | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta | en |
dc.subject | APPROXIMATION SCHEMES | en |
dc.subject | BACKWARD PROCEDURES | en |
dc.subject | GENERALIZED SOLUTIONS OF HAMILTON–JACOBI EQUATIONS | en |
dc.subject | OPTIMAL CONTROL | en |
dc.subject | VALUE FUNCTION | en |
dc.title | Numerical methods for construction of value functions in optimal control problems on an infinite horizon | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 38503195 | - |
dc.identifier.doi | 10.20537/2226-3594-2019-53-02 | - |
dc.identifier.scopus | 85079161029 | - |
local.affiliation | Department of Applied Mathematics and Mechanics, Ural Federal University, pr. Lenina, 51, Yekaterinburg, 620083, Russian Federation | en |
local.affiliation | Department of Dynamic Systems, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620990, Russian Federation | en |
local.affiliation | Ural Federal University, pr. Lenina, 51, Yekaterinburg, 620083, Russian Federation | en |
local.contributor.employee | Bagno, A.L., Department of Applied Mathematics and Mechanics, Ural Federal University, pr. Lenina, 51, Yekaterinburg, 620083, Russian Federation | ru |
local.contributor.employee | Tarasyev, A.M., Department of Dynamic Systems, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620990, Russian Federation, Ural Federal University, pr. Lenina, 51, Yekaterinburg, 620083, Russian Federation | ru |
local.description.firstpage | 15 | - |
local.description.lastpage | 26 | - |
local.issue | 53 | - |
dc.identifier.wos | 000487290700002 | - |
local.identifier.pure | 10354059 | - |
local.identifier.eid | 2-s2.0-85079161029 | - |
local.identifier.wos | WOS:000487290700002 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.20537-2226-3594-2019-53-02.pdf | 186,28 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.