Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/90422
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Hendy, A. S. | en |
dc.contributor.author | Macías-Díaz, J. E. | en |
dc.date.accessioned | 2020-09-29T09:47:19Z | - |
dc.date.available | 2020-09-29T09:47:19Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Hendy, A. S. A Conservative Scheme with Optimal Error Estimates for a Multidimensional Space-Fractional Gross-Pitaevskii Equation / A. S. Hendy, J. E. Macías-Díaz. — DOI 10.2478/amcs-2019-0053 // International Journal of Applied Mathematics and Computer Science. — 2020. — Vol. 4. — Iss. 29. — P. 713-723. | en |
dc.identifier.issn | 1641-876X | - |
dc.identifier.other | https://content.sciendo.com/downloadpdf/journals/amcs/29/4/article-p713.pdf | |
dc.identifier.other | 1 | good_DOI |
dc.identifier.other | 25980087-7e1e-4bb3-b3a8-9f59c7258dae | pure_uuid |
dc.identifier.other | http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85078192086 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/90422 | - |
dc.description.abstract | The present work departs from an extended form of the classical multi-dimensional Gross-Pitaevskii equation, which considers fractional derivatives of the Riesz type in space, a generalized potential function and angular momentum rotation. It is well known that the classical system possesses functionals which are preserved throughout time. It is easy to check that the generalized fractional model considered in this work also possesses conserved quantities, whence the development of conservative and efficient numerical schemes is pragmatically justified. Motivated by these facts, we propose a finite-difference method based on weighted-shifted Grünwald differences to approximate the solutions of the generalized Gross-Pitaevskii system. We provide here a discrete extension of the uniform Sobolev inequality to multiple dimensions, and show that the proposed method is capable of preserving discrete forms of the mass and the energy of the model. Moreover, we establish thoroughly the stability and the convergence of the technique, and provide some illustrative simulations to show that the method is capable of preserving the total mass and the total energy of the generalized system. © 2019 Ahmed S. Hendy et al., published by Sciendo 2019. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Sciendo | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.rights | cc-by-nc-nd | other |
dc.source | International Journal of Applied Mathematics and Computer Science | en |
dc.subject | CONSERVATIVE METHOD | en |
dc.subject | DISCRETE UNIFORM SOBOLEV INEQUALITY | en |
dc.subject | GENERALIZED GROSS-PITAEVSKII SYSTEM | en |
dc.subject | OPTIMAL ERROR BOUNDS | en |
dc.subject | RIESZ FRACTIONAL DIFFUSION | en |
dc.subject | BOSE-EINSTEIN CONDENSATION | en |
dc.subject | ERROR ANALYSIS | en |
dc.subject | FINITE DIFFERENCE METHOD | en |
dc.subject | CONSERVATIVE METHOD | en |
dc.subject | FRACTIONAL DIFFUSION | en |
dc.subject | GENERALIZED GROSS-PITAEVSKII SYSTEM | en |
dc.subject | OPTIMAL ERROR BOUND | en |
dc.subject | SOBOLEV INEQUALITIES | en |
dc.subject | WAVE EFFECTS | en |
dc.title | A Conservative Scheme with Optimal Error Estimates for a Multidimensional Space-Fractional Gross-Pitaevskii Equation | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.2478/amcs-2019-0053 | - |
dc.identifier.scopus | 85078192086 | - |
local.affiliation | Department of Computational Mathematics and Computer Science, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russian Federation | en |
local.affiliation | Department of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypt | en |
local.affiliation | Department of Mathematics and Physics Autonomous, University of Aguascalientes, Avenida Universidad 940 Ciudad Universitaria, Aguascalientes, 20131, Mexico | en |
local.contributor.employee | Hendy, A.S., Department of Computational Mathematics and Computer Science, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russian Federation, Department of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypt | ru |
local.contributor.employee | Macías-Díaz, J.E., Department of Mathematics and Physics Autonomous, University of Aguascalientes, Avenida Universidad 940 Ciudad Universitaria, Aguascalientes, 20131, Mexico | ru |
local.description.firstpage | 713 | - |
local.description.lastpage | 723 | - |
local.issue | 29 | - |
local.volume | 4 | - |
dc.identifier.wos | 000506214500008 | - |
local.identifier.pure | 11903830 | - |
local.identifier.eid | 2-s2.0-85078192086 | - |
local.identifier.wos | WOS:000506214500008 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.2478-amcs-2019-0053.pdf | 478,9 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.