Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90422
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorHendy, A. S.en
dc.contributor.authorMacías-Díaz, J. E.en
dc.date.accessioned2020-09-29T09:47:19Z-
dc.date.available2020-09-29T09:47:19Z-
dc.date.issued2020-
dc.identifier.citationHendy, A. S. A Conservative Scheme with Optimal Error Estimates for a Multidimensional Space-Fractional Gross-Pitaevskii Equation / A. S. Hendy, J. E. Macías-Díaz. — DOI 10.2478/amcs-2019-0053 // International Journal of Applied Mathematics and Computer Science. — 2020. — Vol. 4. — Iss. 29. — P. 713-723.en
dc.identifier.issn1641-876X-
dc.identifier.otherhttps://content.sciendo.com/downloadpdf/journals/amcs/29/4/article-p713.pdfpdf
dc.identifier.other1good_DOI
dc.identifier.other25980087-7e1e-4bb3-b3a8-9f59c7258daepure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85078192086m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90422-
dc.description.abstractThe present work departs from an extended form of the classical multi-dimensional Gross-Pitaevskii equation, which considers fractional derivatives of the Riesz type in space, a generalized potential function and angular momentum rotation. It is well known that the classical system possesses functionals which are preserved throughout time. It is easy to check that the generalized fractional model considered in this work also possesses conserved quantities, whence the development of conservative and efficient numerical schemes is pragmatically justified. Motivated by these facts, we propose a finite-difference method based on weighted-shifted Grünwald differences to approximate the solutions of the generalized Gross-Pitaevskii system. We provide here a discrete extension of the uniform Sobolev inequality to multiple dimensions, and show that the proposed method is capable of preserving discrete forms of the mass and the energy of the model. Moreover, we establish thoroughly the stability and the convergence of the technique, and provide some illustrative simulations to show that the method is capable of preserving the total mass and the total energy of the generalized system. © 2019 Ahmed S. Hendy et al., published by Sciendo 2019.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSciendoen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-by-nc-ndother
dc.sourceInternational Journal of Applied Mathematics and Computer Scienceen
dc.subjectCONSERVATIVE METHODen
dc.subjectDISCRETE UNIFORM SOBOLEV INEQUALITYen
dc.subjectGENERALIZED GROSS-PITAEVSKII SYSTEMen
dc.subjectOPTIMAL ERROR BOUNDSen
dc.subjectRIESZ FRACTIONAL DIFFUSIONen
dc.subjectBOSE-EINSTEIN CONDENSATIONen
dc.subjectERROR ANALYSISen
dc.subjectFINITE DIFFERENCE METHODen
dc.subjectCONSERVATIVE METHODen
dc.subjectFRACTIONAL DIFFUSIONen
dc.subjectGENERALIZED GROSS-PITAEVSKII SYSTEMen
dc.subjectOPTIMAL ERROR BOUNDen
dc.subjectSOBOLEV INEQUALITIESen
dc.subjectWAVE EFFECTSen
dc.titleA Conservative Scheme with Optimal Error Estimates for a Multidimensional Space-Fractional Gross-Pitaevskii Equationen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.2478/amcs-2019-0053-
dc.identifier.scopus85078192086-
local.affiliationDepartment of Computational Mathematics and Computer Science, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russian Federationen
local.affiliationDepartment of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypten
local.affiliationDepartment of Mathematics and Physics Autonomous, University of Aguascalientes, Avenida Universidad 940 Ciudad Universitaria, Aguascalientes, 20131, Mexicoen
local.contributor.employeeHendy, A.S., Department of Computational Mathematics and Computer Science, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russian Federation, Department of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egyptru
local.contributor.employeeMacías-Díaz, J.E., Department of Mathematics and Physics Autonomous, University of Aguascalientes, Avenida Universidad 940 Ciudad Universitaria, Aguascalientes, 20131, Mexicoru
local.description.firstpage713-
local.description.lastpage723-
local.issue29-
local.volume4-
dc.identifier.wos000506214500008-
local.identifier.pure11903830-
local.identifier.eid2-s2.0-85078192086-
local.identifier.wosWOS:000506214500008-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.2478-amcs-2019-0053.pdf478,9 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.