Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90304
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBelyaev, A. V.en
dc.contributor.authorRyazanova, T. V.en
dc.date.accessioned2020-09-29T09:46:51Z-
dc.date.available2020-09-29T09:46:51Z-
dc.date.issued2019-
dc.identifier.citationBelyaev, A. V. The stochastic sensitivity function method in analysis of the piecewise-smooth model of population dynamics / A. V. Belyaev, T. V. Ryazanova. — DOI 10.20537/2226-3594-2019-53-04 // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. — 2019. — Iss. 53. — P. 36-47.en
dc.identifier.issn2226-3594-
dc.identifier.otherhttp://www.mathnet.ru/php/getFT.phtml?jrnid=iimi&paperid=369&what=fullt&option_lang=engpdf
dc.identifier.other1good_DOI
dc.identifier.otherde69fc5f-99ff-43e3-90b4-66eaf1547009pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85079116293m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90304-
dc.description.abstractThis work is devoted to the application of the stochastic sensitivity function method to attractors of a piecewise-smooth one-dimensional map describing the dynamics of the population size. The first stage of the study is a parametric analysis of possible modes of the deterministic model: the definition of zones of existence of stable equilibria and chaotic attractors. The theory of critical points is used to determine the parametric boundaries of a chaotic attractor. In the case where the system is influenced by a random effect, based on the technique of the stochastic sensitivity function, a description of the spread of random states around the equilibrium and chaotic attractor is carried out. A comparative analysis of the influence of parametric and additive noise on the attractors of the system is conducted. Using the technique of confidence intervals, probabilistic mechanisms of extinction of a population under the influence of random disturbances are studied. Changes in the parametric boundaries of the existence of a population under the impact of a random perturbation are analyzed. © 2019 Udmurt State University. All right reserved.en
dc.description.sponsorshipRussian Science Foundation, RSF: 16–11–10098en
dc.description.sponsorshipFunding. The research was supported by the Russian Science Foundation (project no. 16–11–10098).en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherUdmurt State Universityen
dc.relationinfo:eu-repo/grantAgreement/RSF//16-11-10098en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIzvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universitetaen
dc.subjectPIECEWISE-SMOOTH MAPen
dc.subjectPOPULATION DYNAMICSen
dc.subjectSTOCHASTIC SENSITIVITYen
dc.titleThe stochastic sensitivity function method in analysis of the piecewise-smooth model of population dynamicsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi38503197-
dc.identifier.doi10.20537/2226-3594-2019-53-04-
dc.identifier.scopus85079116293-
local.affiliationUral Federal University, pr. Lenina, 51, Yekaterinburg, 620000, Russian Federationen
local.affiliationDepartment of Theoretical and Mathematical Physics, Ural Federal University, pr. Lenina, 51, Yekaterinburg, 620000, Russian Federationen
local.contributor.employeeBelyaev, A.V., Ural Federal University, pr. Lenina, 51, Yekaterinburg, 620000, Russian Federationru
local.contributor.employeeRyazanova, T.V., Department of Theoretical and Mathematical Physics, Ural Federal University, pr. Lenina, 51, Yekaterinburg, 620000, Russian Federationru
local.description.firstpage36-
local.description.lastpage47-
local.issue53-
dc.identifier.wos000487290700004-
local.identifier.pure10353519-
local.identifier.eid2-s2.0-85079116293-
local.fund.rsf16-11-10098-
local.identifier.wosWOS:000487290700004-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.20537-2226-3594-2019-53-04.pdf50,43 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.