Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90255
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAlam, M. J.en
dc.contributor.authorChaplick, S.en
dc.contributor.authorFijavž, G.en
dc.contributor.authorKaufmann, M.en
dc.contributor.authorKobourov, S. G.en
dc.contributor.authorPupyrev, S.en
dc.contributor.authorToeniskoetter, J.en
dc.date.accessioned2020-09-29T09:46:38Z-
dc.date.available2020-09-29T09:46:38Z-
dc.date.issued2017-
dc.identifier.citationThreshold-coloring and unit-cube contact representation of planar graphs / M. J. Alam, S. Chaplick, G. Fijavž, M. Kaufmann, et al. . — DOI 10.1016/j.dam.2015.09.003 // Discrete Applied Mathematics. — 2017. — Iss. 216. — P. 2-14.en
dc.identifier.issn0166-218X-
dc.identifier.otherhttp://manuscript.elsevier.com/S0166218X15004631/pdf/S0166218X15004631.pdfpdf
dc.identifier.other1good_DOI
dc.identifier.othera8547221-d3dc-47cb-af60-08a95326f163pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=84950145059m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90255-
dc.description.abstractIn this paper we study threshold-coloring of graphs, where the vertex colors represented by integers are used to describe any spanning subgraph of the given graph as follows. A pair of vertices with a small difference in their colors implies that the edge between them is present, while a pair of vertices with a big color difference implies that the edge is absent. Not all planar graphs are threshold-colorable, but several subclasses, such as trees, some planar grids, and planar graphs with no short cycles can always be threshold-colored. Using these results we obtain unit-cube contact representation of several subclasses of planar graphs. Variants of the threshold-coloring problem are related to well-known graph coloring and other graph-theoretic problems. Using these relations we show the NP-completeness for two of these variants, and describe a polynomial-time algorithm for another. © 2015 Elsevier B.V.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightselsevier-specific: oa user licenseother
dc.sourceDiscrete Applied Mathematicsen
dc.subjectGRAPH COLORINGen
dc.subjectPLANAR GRAPHSen
dc.subjectTHRESHOLD-COLORINGen
dc.subjectUNIT-CUBE CONTACT REPRESENTATIONen
dc.subjectALGORITHMSen
dc.subjectCOLORen
dc.subjectCOLORIMETRYen
dc.subjectCOLORINGen
dc.subjectGEOMETRYen
dc.subjectGRAPHIC METHODSen
dc.subjectPOLYNOMIAL APPROXIMATIONen
dc.subjectTREES (MATHEMATICS)en
dc.subjectCOLOR DIFFERENCEen
dc.subjectCOLORING PROBLEMSen
dc.subjectGRAPH COLORINGSen
dc.subjectGRAPH-THEORETIC PROBLEMen
dc.subjectNP-COMPLETENESSen
dc.subjectPLANAR GRAPHen
dc.subjectPOLYNOMIAL-TIME ALGORITHMSen
dc.subjectUNIT-CUBE CONTACT REPRESENTATIONen
dc.subjectGRAPH THEORYen
dc.titleThreshold-coloring and unit-cube contact representation of planar graphsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/acceptedVersionen
dc.identifier.doi10.1016/j.dam.2015.09.003-
dc.identifier.scopus84950145059-
local.affiliationDepartment of Computer Science, University of Arizona, Tucson, AZ, United Statesen
local.affiliationDepartment of Applied Mathematics, Charles University, Prague, Czech Republicen
local.affiliationWilhelm-Schickhard-Institut für Informatik, Universität Tübingen, Tübingen, Germanyen
local.affiliationFaculty of Computer and Information Science, University of Ljubljana, Ljubljana, Sloveniaen
local.affiliationInstitute of Mathematics and Computer Science, Ural Federal University, Russian Federationen
local.contributor.employeeAlam, M.J., Department of Computer Science, University of Arizona, Tucson, AZ, United Statesru
local.contributor.employeeChaplick, S., Department of Applied Mathematics, Charles University, Prague, Czech Republicru
local.contributor.employeeFijavž, G., Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Sloveniaru
local.contributor.employeeKaufmann, M., Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen, Tübingen, Germanyru
local.contributor.employeeKobourov, S.G., Department of Computer Science, University of Arizona, Tucson, AZ, United Statesru
local.contributor.employeePupyrev, S., Department of Computer Science, University of Arizona, Tucson, AZ, United States, Institute of Mathematics and Computer Science, Ural Federal University, Russian Federationru
local.contributor.employeeToeniskoetter, J., Department of Computer Science, University of Arizona, Tucson, AZ, United Statesru
local.description.firstpage2-
local.description.lastpage14-
local.issue216-
dc.identifier.wos000390504000002-
local.identifier.pure1309638-
local.identifier.eid2-s2.0-84950145059-
local.identifier.wosWOS:000390504000002-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1016-j.dam.2015.09.003.pdf516,65 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.