Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90239
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorDunaeva, A. V.en
dc.contributor.authorKornilov, F. A.en
dc.date.accessioned2020-09-29T09:46:35Z-
dc.date.available2020-09-29T09:46:35Z-
dc.date.issued2018-
dc.identifier.citationDunaeva, A. V. Building extraction from satellite imagery using a digital surface model / A. V. Dunaeva, F. A. Kornilov. — DOI 10.18287/1613-0073-2018-2210-372-378 // CEUR Workshop Proceedings. — 2018. — Iss. 2210. — P. 372-378.en
dc.identifier.issn1613-0073-
dc.identifier.otherhttps://doi.org/10.18287/1613-0073-2018-2210-372-378pdf
dc.identifier.other2-3good_DOI
dc.identifier.otherc63956b8-1bd6-4709-a466-067596c08e9cpure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85055432631m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90239-
dc.description.abstractIn this paper, two approaches to building extraction from satellite imagery and height data obtained from stereo images or LIDAR are compared. The first approach consists of detecting high-rise objects in a digital surface model and then improving recognition accuracy using segmentation of spectral information. The second approach uses the U-Net convolutional neural network, which showed the best results for the extraction of objects from aerospace images on a number of large datasets. Extensive experiments were carried out to evaluate the dependence of the quality of U-Net-based building extraction on the different data types (including high-resolution satellite images and digital surface model data). Building extraction quality of the trained network was also evaluated on satellite images with different spatial resolutions. © 2018 CEUR-WS. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherCEUR-WSen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceCEUR Workshop Proceedingsen
dc.subjectDATA MININGen
dc.subjectEXTRACTIONen
dc.subjectIMAGE QUALITYen
dc.subjectLARGE DATASETen
dc.subjectNANOTECHNOLOGYen
dc.subjectNEURAL NETWORKSen
dc.subjectOBJECT DETECTIONen
dc.subjectQUALITY CONTROLen
dc.subjectREMOTE SENSINGen
dc.subjectSATELLITE IMAGERYen
dc.subjectAEROSPACE IMAGESen
dc.subjectBUILDING EXTRACTIONen
dc.subjectCONVOLUTIONAL NEURAL NETWORKen
dc.subjectDIGITAL SURFACE MODELSen
dc.subjectHIGH RESOLUTION SATELLITE IMAGESen
dc.subjectRECOGNITION ACCURACYen
dc.subjectSPATIAL RESOLUTIONen
dc.subjectSPECTRAL INFORMATIONen
dc.subjectSTEREO IMAGE PROCESSINGen
dc.titleBuilding extraction from satellite imagery using a digital surface modelen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.18287/1613-0073-2018-2210-372-378-
dc.identifier.scopus85055432631-
local.affiliationN.N. Krasovskii Inst. of Math. and Mechanics of the Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Street 16, Yekaterinburg, 620990, Russian Federationen
local.affiliationUral Federal University Named after the First President of Russia B.N. Yeltsin, Mira Street 19, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeDunaeva, A.V., N.N. Krasovskii Inst. of Math. and Mechanics of the Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Street 16, Yekaterinburg, 620990, Russian Federation, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Mira Street 19, Yekaterinburg, 620002, Russian Federationru
local.contributor.employeeKornilov, F.A., N.N. Krasovskii Inst. of Math. and Mechanics of the Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Street 16, Yekaterinburg, 620990, Russian Federationru
local.description.firstpage372-
local.description.lastpage378-
local.issue2210-
local.identifier.pure8171303-
local.identifier.eid2-s2.0-85055432631-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.18287-1613-0073-2018-2210-372-378.pdf787,17 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.