Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/90239
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Dunaeva, A. V. | en |
dc.contributor.author | Kornilov, F. A. | en |
dc.date.accessioned | 2020-09-29T09:46:35Z | - |
dc.date.available | 2020-09-29T09:46:35Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Dunaeva, A. V. Building extraction from satellite imagery using a digital surface model / A. V. Dunaeva, F. A. Kornilov. — DOI 10.18287/1613-0073-2018-2210-372-378 // CEUR Workshop Proceedings. — 2018. — Iss. 2210. — P. 372-378. | en |
dc.identifier.issn | 1613-0073 | - |
dc.identifier.other | https://doi.org/10.18287/1613-0073-2018-2210-372-378 | |
dc.identifier.other | 2-3 | good_DOI |
dc.identifier.other | c63956b8-1bd6-4709-a466-067596c08e9c | pure_uuid |
dc.identifier.other | http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85055432631 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/90239 | - |
dc.description.abstract | In this paper, two approaches to building extraction from satellite imagery and height data obtained from stereo images or LIDAR are compared. The first approach consists of detecting high-rise objects in a digital surface model and then improving recognition accuracy using segmentation of spectral information. The second approach uses the U-Net convolutional neural network, which showed the best results for the extraction of objects from aerospace images on a number of large datasets. Extensive experiments were carried out to evaluate the dependence of the quality of U-Net-based building extraction on the different data types (including high-resolution satellite images and digital surface model data). Building extraction quality of the trained network was also evaluated on satellite images with different spatial resolutions. © 2018 CEUR-WS. All rights reserved. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | CEUR-WS | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | CEUR Workshop Proceedings | en |
dc.subject | DATA MINING | en |
dc.subject | EXTRACTION | en |
dc.subject | IMAGE QUALITY | en |
dc.subject | LARGE DATASET | en |
dc.subject | NANOTECHNOLOGY | en |
dc.subject | NEURAL NETWORKS | en |
dc.subject | OBJECT DETECTION | en |
dc.subject | QUALITY CONTROL | en |
dc.subject | REMOTE SENSING | en |
dc.subject | SATELLITE IMAGERY | en |
dc.subject | AEROSPACE IMAGES | en |
dc.subject | BUILDING EXTRACTION | en |
dc.subject | CONVOLUTIONAL NEURAL NETWORK | en |
dc.subject | DIGITAL SURFACE MODELS | en |
dc.subject | HIGH RESOLUTION SATELLITE IMAGES | en |
dc.subject | RECOGNITION ACCURACY | en |
dc.subject | SPATIAL RESOLUTION | en |
dc.subject | SPECTRAL INFORMATION | en |
dc.subject | STEREO IMAGE PROCESSING | en |
dc.title | Building extraction from satellite imagery using a digital surface model | en |
dc.type | Conference Paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.18287/1613-0073-2018-2210-372-378 | - |
dc.identifier.scopus | 85055432631 | - |
local.affiliation | N.N. Krasovskii Inst. of Math. and Mechanics of the Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Street 16, Yekaterinburg, 620990, Russian Federation | en |
local.affiliation | Ural Federal University Named after the First President of Russia B.N. Yeltsin, Mira Street 19, Yekaterinburg, 620002, Russian Federation | en |
local.contributor.employee | Dunaeva, A.V., N.N. Krasovskii Inst. of Math. and Mechanics of the Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Street 16, Yekaterinburg, 620990, Russian Federation, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Mira Street 19, Yekaterinburg, 620002, Russian Federation | ru |
local.contributor.employee | Kornilov, F.A., N.N. Krasovskii Inst. of Math. and Mechanics of the Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Street 16, Yekaterinburg, 620990, Russian Federation | ru |
local.description.firstpage | 372 | - |
local.description.lastpage | 378 | - |
local.issue | 2210 | - |
local.identifier.pure | 8171303 | - |
local.identifier.eid | 2-s2.0-85055432631 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.18287-1613-0073-2018-2210-372-378.pdf | 787,17 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.