Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/90218
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVorobyov, E. I.en
dc.contributor.authorMatsukoba, R.en
dc.contributor.authorOmukai, K.en
dc.contributor.authorGuedel, M.en
dc.date.accessioned2020-09-29T09:46:30Z-
dc.date.available2020-09-29T09:46:30Z-
dc.date.issued2020-
dc.identifier.citationThermal evolution of protoplanetary disks: From β -cooling to decoupled gas and dust temperatures / E. I. Vorobyov, R. Matsukoba, K. Omukai, M. Guedel. — DOI 10.1051/0004-6361/202037841 // Astronomy and Astrophysics. — 2020. — Iss. 638. — 202037841.en
dc.identifier.issn0004-6361-
dc.identifier.otherhttp://arxiv.org/pdf/2004.13561pdf
dc.identifier.other1good_DOI
dc.identifier.otherf5279b90-5e2f-4f42-b01e-0926dee5ae16pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85087839755m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90218-
dc.description.abstractAims. We explore the long-term evolution of young protoplanetary disks with different approaches to computing the thermal structure determined by various cooling and heating processes in the disk and its surroundings. Methods. Numerical hydrodynamics simulations in the thin-disk limit were complemented with three thermal evolution schemes: a simplified β-cooling approach with and without irradiation, where the rate of disk cooling is proportional to the local dynamical time; a fiducial model with equal dust and gas temperatures calculated taking viscous heating, irradiation, and radiative cooling into account; and a more sophisticated approach allowing decoupled dust and gas temperatures. Results. We found that the gas temperature may significantly exceed that of dust in the outer regions of young disks thanks to additional compressional heating caused by the infalling envelope material in the early stages of disk evolution and slow collisional exchange of energy between gas and dust in low-density disk regions. However, the outer envelope shows an inverse trend, with the gas temperatures dropping below that of dust. The global disk evolution is only weakly sensitive to temperature decoupling. Nevertheless, separate dust and gas temperatures may affect the chemical composition, dust evolution, and disk mass estimates. Constant-β models without stellar and background irradiation fail to reproduce the disk evolution with more sophisticated thermal schemes because of the intrinsically variable nature of the β-parameter. Constant-β models with irradiation more closely match the dynamical and thermal evolution, but the agreement is still incomplete. Conclusions. Models allowing separate dust and gas temperatures are needed when emphasis is placed on the chemical or dust evolution in protoplanetary disks, particularly in subsolar metallicity environments. © ESO 2020.en
dc.description.sponsorshipAustrian Science Fund, FWF: P31635-N27en
dc.description.sponsorshipAustrian Science Fund, FWFen
dc.description.sponsorship17H06360, 17H02869en
dc.description.sponsorshipAcknowledgements. We are thankful to the anonymous referee for constructive comments that helped to improve the manuscript. E.I.V. and M.G. acknowledge support from the Austrian Science Fund (FWF) under research grant P31635-N27. K.O and R.M acknowledge support work by MEXT/JSPS KAKENHI Grant Number17H01102, 17H02869, 17H06360. The simulations were performed on the Vienna Scientific Cluster.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherEDP Sciencesen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAstronomy and Astrophysicsen
dc.subjectHYDRODYNAMICSen
dc.subjectPROTOPLANETARY DISKSen
dc.subjectSTARS: PROTOSTARSen
dc.subjectGASESen
dc.subjectIRRADIATIONen
dc.subjectLONG TERM EVOLUTION (LTE)en
dc.subjectRADIATIVE COOLINGen
dc.subjectCHEMICAL COMPOSITIONSen
dc.subjectCOMPRESSIONAL HEATINGen
dc.subjectDUST TEMPERATURESen
dc.subjectEXCHANGE OF ENERGYen
dc.subjectNUMERICAL HYDRODYNAMICSen
dc.subjectPROTOPLANETARY DISKSen
dc.subjectSUB-SOLAR METALLICITYen
dc.subjectTHERMAL EVOLUTIONen
dc.subjectDUSTen
dc.titleThermal evolution of protoplanetary disks: From β -cooling to decoupled gas and dust temperaturesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/submittedVersionen
dc.identifier.doi10.1051/0004-6361/202037841-
dc.identifier.scopus85087839755-
local.affiliationUniversity of Vienna, Department of Astrophysics, Vienna, 1180, Austriaen
local.affiliationUral Federal University, 51 Lenin Str., Ekaterinburg, 620051, Russian Federationen
local.affiliationAstronomical Institute, Graduate School of Sciences, Tohoku University, Aoba, Sendai, Miyagi, 980-8578, Japanen
local.contributor.employeeVorobyov, E.I., University of Vienna, Department of Astrophysics, Vienna, 1180, Austria, Ural Federal University, 51 Lenin Str., Ekaterinburg, 620051, Russian Federationru
local.contributor.employeeMatsukoba, R., Astronomical Institute, Graduate School of Sciences, Tohoku University, Aoba, Sendai, Miyagi, 980-8578, Japanru
local.contributor.employeeOmukai, K., Astronomical Institute, Graduate School of Sciences, Tohoku University, Aoba, Sendai, Miyagi, 980-8578, Japanru
local.contributor.employeeGuedel, M., University of Vienna, Department of Astrophysics, Vienna, 1180, Austriaru
local.issue638-
dc.identifier.wos000545013500001-
local.identifier.pure13390941-
local.description.order202037841-
local.identifier.eid2-s2.0-85087839755-
local.identifier.wosWOS:000545013500001-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1051-0004-6361-202037841.pdf13 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.