Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90193
Название: Design of materials for solid oxide fuel cells cathodes and oxygen separation membranes based on fundamental studies of their oxygen mobility and surface reactivity
Авторы: Sadykov, V.
Sadovskaya, E.
Eremeev, N.
Pikalova, E.
Bogdanovich, N.
Filonova, E.
Fedorova, Y.
Krasnov, A.
Skriabin, P.
Lukashevich, A.
Дата публикации: 2019
Издатель: EDP Sciences
Библиографическое описание: Design of materials for solid oxide fuel cells cathodes and oxygen separation membranes based on fundamental studies of their oxygen mobility and surface reactivity / V. Sadykov, E. Sadovskaya, N. Eremeev, E. Pikalova, et al. . — DOI 10.1051/e3sconf/201911600068 // E3S Web of Conferences. — 2019. — Iss. 116. — 68.
Аннотация: Design of materials for solid oxide fuel cells cathodes and oxygen separation membranes and studying their oxygen transport characteristics are important problems of modern hydrogen energy. In the current work, fundamentals of such materials design based on characterization of their oxygen mobility by oxygen isotope exchange with C18O2 and 18O2 in flow and closed reactors for samples of Ruddlesden - Popper-type oxides Ln2-xCaxNiO4+δ, perovskite-fluorite nanocomposites PrNi0.5Co0.5O3-δ - Ce0.9Y0.1O2-δ, etc. are presented. Fast oxygen transport was demonstrated for PNC - YDC (DO ~10-8 cm2/s at 700°C) nanocomposites due to domination of the fast diffusion channel involving oxygen of the fluorite phase with incorporated Pr cations and developed perovskite-fluorite interfaces. For LnCNO materials a high oxygen mobility (DO ~10-7 cm2/s at 700°C) provided by the cooperative mechanism of its migration was demonstrated. Depending on Ca dopant content and Ln cation nature, in some cases 1-2 additional channels of the slow diffusion appear due to decreasing the interstitial oxygen content and increasing the energy barrier for oxygen jumps due to cationic size effect. Optimized by the chemical composition and nanodomain structure materials of these types demonstrated a high performance as SOFC cathodes and functional layers in asymmetric supported oxygen separation membranes. © The Authors, published by EDP Sciences, 2019.
Ключевые слова: CATHODES
CERIUM COMPOUNDS
COBALT COMPOUNDS
ENVIRONMENTAL ENGINEERING
FLUORSPAR
MEMBRANES
NANOCOMPOSITES
NICKEL COMPOUNDS
OXYGEN
PEROVSKITE
POSITIVE IONS
PRASEODYMIUM COMPOUNDS
CHEMICAL COMPOSITIONS
COOPERATIVE MECHANISMS
FUNDAMENTAL STUDIES
INTERSTITIAL OXYGEN
NANODOMAIN STRUCTURES
OXYGEN ISOTOPE EXCHANGE
OXYGEN SEPARATION MEMBRANES
SURFACE REACTIVITY
SOLID OXIDE FUEL CELLS (SOFC)
URI: http://elar.urfu.ru/handle/10995/90193
Условия доступа: info:eu-repo/semantics/openAccess
cc-by
Идентификатор SCOPUS: 85072797521
Идентификатор PURE: 11104041
ISSN: 2555-0403
DOI: 10.1051/e3sconf/201911600068
Сведения о поддержке: Russian Science Foundation, RSF: 16-13-00112
Support by the Russian Science Foundation (Project 16-13-00112) is gratefully acknowledged. The authors from the Ural Federal University are grateful to the Government of the Russian Federation (Agreement 02.A03.21.0006, Act 211). Ce0.9Y0.1O2-δ|Ce0.9Gd0.1O2-δ|Ni/Zr0.84Y0.16O2-δ anodic half-cells and Ni/Al foam substrates were kindly provided by H.C. Starck, Germany and Powder Metallurgy Institute NAN Belarus, respectively.
Карточка проекта РНФ: 16-13-00112
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1051-e3sconf-201911600068.pdf1,06 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.