Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90159
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorLesnichyova, A.en
dc.contributor.authorStroeva, A.en
dc.contributor.authorBelyakov, S.en
dc.contributor.authorFarlenkov, A.en
dc.contributor.authorShevyrev, N.en
dc.contributor.authorPlekhanov, M.en
dc.contributor.authorKhromushin, I.en
dc.contributor.authorAksenova, T.en
dc.contributor.authorAnanyev, M.en
dc.contributor.authorKuzmin, A.en
dc.date.accessioned2020-09-29T09:46:14Z-
dc.date.available2020-09-29T09:46:14Z-
dc.date.issued2019-
dc.identifier.citationWater uptake and transport properties of La1-xCaxScO3-α proton-conducting oxides / A. Lesnichyova, A. Stroeva, S. Belyakov, A. Farlenkov, et al. . — DOI 10.3390/ma12142219 // Materials. — 2019. — Vol. 14. — Iss. 12. — 2219.en
dc.identifier.issn1996-1944-
dc.identifier.otherhttps://www.mdpi.com/1996-1944/12/14/2219/pdfpdf
dc.identifier.other1good_DOI
dc.identifier.other3b562102-51bf-486d-9344-132a53df5dfcpure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85070462417m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90159-
dc.description.abstractIn this study, oxide materials La1-xCaxScO3-α (x = 0.03, 0.05 and 0.10) were synthesized by the citric-nitrate combustion method. Single-phase solid solutions were obtained in the case of calcium content x=0.03 and 0.05,whereas a calcium-enriched impurity phasewas found at x=0.10. Water uptake and release were studied by means of thermogravimetric analysis, thermodesorption spectroscopy and dilatometry. It was shown that lower calcium content in the main phase leads to a decrease in the water uptake. Conductivity wasmeasured by four-probe direct current (DC) and two-probe ascension current (AC)methods at different temperatures, pO2 and pH2O. The effects of phase composition,microstructure and defect structure on electrical conductivity, as well as correlation between conductivity and water uptake experiments, were discussed. The contribution of ionic conductivity of La1-xCaxScO3-α rises with decreasing temperature and increasing humidity. The domination of proton conductivity at temperatures below 500 °C under oxidizing and reducing atmospheres is exhibited. Water uptake and release as well as transport properties of La1-xCaxScO3-α are compared with the properties of similar proton electrolytes, La1-xSrxScO3-α, and the possible reasons for their differences were discussed. © 2019 by the authors.en
dc.description.sponsorshipRussian Science Foundation, RSF: 16-13-00053en
dc.description.sponsorshipGovernment Council on Grants, Russian Federationen
dc.description.sponsorshipMinistry of Education and Science of the Republic of Kazakhstanen
dc.description.sponsorshipFunding: The research was partially supported by the Russian Science Foundation (Grant №16-13-00053) and the Ministry of Education and Science of the Republic of Kazakhstan (Project No. AP05130148). The education activity of Ph.D. and students involved into this work is supported by Act 211 of Government of the Russian Federation, agreement No. 02.A03.21.0006.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPI AGen
dc.relationinfo:eu-repo/grantAgreement/RSF//16-13-00053en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.sourceMaterialsen
dc.subjectDEFECT STRUCTUREen
dc.subjectLASCO3en
dc.subjectPROTON CONDUCTIVITY AND PROTON MOBILITYen
dc.subjectWATER UPTAKEen
dc.subjectCALCIUMen
dc.subjectDEFECT STRUCTURESen
dc.subjectDEFECTSen
dc.subjectPROBESen
dc.subjectPROTON CONDUCTIVITYen
dc.subjectTHERMOGRAVIMETRIC ANALYSISen
dc.subjectTRANSPORT PROPERTIESen
dc.subjectELECTRICAL CONDUCTIVITYen
dc.subjectLASCO3en
dc.subjectPROTON ELECTROLYTESen
dc.subjectPROTON MOBILITYen
dc.subjectPROTON-CONDUCTING OXIDESen
dc.subjectREDUCING ATMOSPHEREen
dc.subjectTHERMODESORPTION SPECTROSCOPYen
dc.subjectWATER UPTAKEen
dc.subjectATMOSPHERIC TEMPERATUREen
dc.titleWater uptake and transport properties of La1-xCaxScO3-α proton-conducting oxidesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/ma12142219-
dc.identifier.scopus85070462417-
local.affiliationLaboratory of Electrochemical Material Sciences, Institute of High-Temperature Electrochemistry, Yekaterinburg, 620137, Russian Federationen
local.affiliationInstitute of New Materials and Technologies, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.affiliationInstitute of Chemical Engineering, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.affiliationLaboratory of Solid State Oxide Fuel Cells, Institute of High-Temperature Electrochemistry, Yekaterinburg, 620137, Russian Federationen
local.affiliationLaboratory of Radiation Diffusion, Institute of Nuclear Physics, Almaty, 050032, Kazakhstanen
local.contributor.employeeLesnichyova, A., Laboratory of Electrochemical Material Sciences, Institute of High-Temperature Electrochemistry, Yekaterinburg, 620137, Russian Federation, Institute of New Materials and Technologies, Ural Federal University, Yekaterinburg, 620002, Russian Federationru
local.contributor.employeeStroeva, A., Laboratory of Electrochemical Material Sciences, Institute of High-Temperature Electrochemistry, Yekaterinburg, 620137, Russian Federation, Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, 620002, Russian Federationru
local.contributor.employeeBelyakov, S., Laboratory of Electrochemical Material Sciences, Institute of High-Temperature Electrochemistry, Yekaterinburg, 620137, Russian Federationru
local.contributor.employeeFarlenkov, A., Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, 620002, Russian Federation, Laboratory of Solid State Oxide Fuel Cells, Institute of High-Temperature Electrochemistry, Yekaterinburg, 620137, Russian Federationru
local.contributor.employeeShevyrev, N., Laboratory of Solid State Oxide Fuel Cells, Institute of High-Temperature Electrochemistry, Yekaterinburg, 620137, Russian Federationru
local.contributor.employeePlekhanov, M., Laboratory of Electrochemical Material Sciences, Institute of High-Temperature Electrochemistry, Yekaterinburg, 620137, Russian Federation, Institute of New Materials and Technologies, Ural Federal University, Yekaterinburg, 620002, Russian Federationru
local.contributor.employeeKhromushin, I., Laboratory of Radiation Diffusion, Institute of Nuclear Physics, Almaty, 050032, Kazakhstanru
local.contributor.employeeAksenova, T., Laboratory of Radiation Diffusion, Institute of Nuclear Physics, Almaty, 050032, Kazakhstanru
local.contributor.employeeAnanyev, M., Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, 620002, Russian Federation, Laboratory of Solid State Oxide Fuel Cells, Institute of High-Temperature Electrochemistry, Yekaterinburg, 620137, Russian Federationru
local.contributor.employeeKuzmin, A., Laboratory of Electrochemical Material Sciences, Institute of High-Temperature Electrochemistry, Yekaterinburg, 620137, Russian Federation, Institute of New Materials and Technologies, Ural Federal University, Yekaterinburg, 620002, Russian Federationru
local.issue12-
local.volume14-
dc.identifier.wos000480454300007-
local.identifier.pure10473183-
local.description.order2219-
local.identifier.eid2-s2.0-85070462417-
local.fund.rsf16-13-00053-
local.identifier.wosWOS:000480454300007-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.3390-ma12142219.pdf3,27 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.