Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90155
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorTarasov, D. A.en
dc.contributor.authorBuevich, A. G.en
dc.contributor.authorSergeev, A. P.en
dc.contributor.authorShichkin, A. V.en
dc.contributor.authorBaglaeva, E. M.en
dc.date.accessioned2020-09-29T09:46:13Z-
dc.date.available2020-09-29T09:46:13Z-
dc.date.issued2017-
dc.identifier.citationTopsoil pollution forecasting using artificial neural networks on the example of the abnormally distributed heavy metal at Russian subarctic / D. A. Tarasov, A. G. Buevich, A. P. Sergeev, A. V. Shichkin, et al. . — DOI 10.1063/1.4981964 // AIP Conference Proceedings. — 2017. — Iss. 1836. — 20024.en
dc.identifier.isbn9780735415065-
dc.identifier.issn0094-243X-
dc.identifier.otherhttps://aip.scitation.org/doi/pdf/10.1063/1.4981964pdf
dc.identifier.other1good_DOI
dc.identifier.othere6152c01-8f82-457d-915b-5a7dac63eeb2pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85021313381m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90155-
dc.description.abstractForecasting the soil pollution is a considerable field of study in the light of the general concern of environmental protection issues. Due to the variation of content and spatial heterogeneity of pollutants distribution at urban areas, the conventional spatial interpolation models implemented in many GIS packages mostly cannot provide appreciate interpolation accuracy. Moreover, the problem of prediction the distribution of the element with high variability in the concentration at the study site is particularly difficult. The work presents two neural networks models forecasting a spatial content of the abnormally distributed soil pollutant (Cr) at a particular location of the subarctic Novy Urengoy, Russia. A method of generalized regression neural network (GRNN) was compared to a common multilayer perceptron (MLP) model. The proposed techniques have been built, implemented and tested using ArcGIS and MATLAB. To verify the models performances, 150 scattered input data points (pollutant concentrations) have been selected from 8.5 km2 area and then split into independent training data set (105 points) and validation data set (45 points). The training data set was generated for the interpolation using ordinary kriging while the validation data set was used to test their accuracies. The networks structures have been chosen during a computer simulation based on the minimization of the RMSE. The predictive accuracy of both models was confirmed to be significantly higher than those achieved by the geostatistical approach (kriging). It is shown that MLP could achieve better accuracy than both kriging and even GRNN for interpolating surfaces. © 2017 Author(s).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Institute of Physics Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAIP Conference Proceedingsen
dc.subjectARTIFICIAL NEURAL NETWORKSen
dc.subjectCHROMIUMen
dc.subjectKRIGINGen
dc.subjectPOLLUTIONen
dc.subjectRESIDUAL KRIGINGen
dc.titleTopsoil pollution forecasting using artificial neural networks on the example of the abnormally distributed heavy metal at Russian subarcticen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1063/1.4981964-
dc.identifier.scopus85021313381-
local.affiliationInstitute of Industrial Ecology, UB RAS, Kovalevskoy, 20, Ekaterinburg, 620990, Russian Federationen
local.affiliationInstitute of Radio-electronics and IT, Ural Federal University, Mira, 19, Ekaterinburg, 620002, Russian Federationen
local.contributor.employeeTarasov, D.A., Institute of Industrial Ecology, UB RAS, Kovalevskoy, 20, Ekaterinburg, 620990, Russian Federation, Institute of Radio-electronics and IT, Ural Federal University, Mira, 19, Ekaterinburg, 620002, Russian Federationru
local.contributor.employeeBuevich, A.G., Institute of Industrial Ecology, UB RAS, Kovalevskoy, 20, Ekaterinburg, 620990, Russian Federationru
local.contributor.employeeSergeev, A.P., Institute of Industrial Ecology, UB RAS, Kovalevskoy, 20, Ekaterinburg, 620990, Russian Federation, Institute of Radio-electronics and IT, Ural Federal University, Mira, 19, Ekaterinburg, 620002, Russian Federationru
local.contributor.employeeShichkin, A.V., Institute of Industrial Ecology, UB RAS, Kovalevskoy, 20, Ekaterinburg, 620990, Russian Federation, Institute of Radio-electronics and IT, Ural Federal University, Mira, 19, Ekaterinburg, 620002, Russian Federationru
local.contributor.employeeBaglaeva, E.M., Institute of Industrial Ecology, UB RAS, Kovalevskoy, 20, Ekaterinburg, 620990, Russian Federation, Institute of Radio-electronics and IT, Ural Federal University, Mira, 19, Ekaterinburg, 620002, Russian Federationru
local.issue1836-
dc.identifier.wos000409539000024-
local.identifier.pure1931696-
local.description.order20024-
local.identifier.eid2-s2.0-85021313381-
local.identifier.wosWOS:000409539000024-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1063-1.4981964.pdf818,36 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.