Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90153
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorSergeev, A. P.en
dc.contributor.authorTarasov, D. A.en
dc.contributor.authorBuevich, A. G.en
dc.contributor.authorShichkin, A. V.en
dc.contributor.authorTyagunov, A. G.en
dc.contributor.authorMedvedev, A. N.en
dc.date.accessioned2020-09-29T09:46:12Z-
dc.date.available2020-09-29T09:46:12Z-
dc.date.issued2017-
dc.identifier.citationModeling of surface dust concentration in snow cover at industrial area using neural networks and kriging / A. P. Sergeev, D. A. Tarasov, A. G. Buevich, A. V. Shichkin, et al. . — DOI 10.1063/1.4981973 // AIP Conference Proceedings. — 2017. — Iss. 1836. — 20033.en
dc.identifier.isbn9780735415065-
dc.identifier.issn0094-243X-
dc.identifier.otherhttps://aip.scitation.org/doi/pdf/10.1063/1.4981973pdf
dc.identifier.other1good_DOI
dc.identifier.otherda968622-9bc3-4463-8e54-5c1d3ff4e026pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85021324104m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90153-
dc.description.abstractModeling of spatial distribution of pollutants in the urbanized territories is difficult, especially if there are multiple emission sources. When monitoring such territories, it is often impossible to arrange the necessary detailed sampling. Because of this, the usual methods of analysis and forecasting based on geostatistics are often less effective. Approaches based on artificial neural networks (ANNs) demonstrate the best results under these circumstances. This study compares two models based on ANNs, which are multilayer perceptron (MLP) and generalized regression neural networks (GRNNs) with the base geostatistical method-kriging. Models of the spatial dust distribution in the snow cover around the existing copper quarry and in the area of emissions of a nickel factory were created. To assess the effectiveness of the models three indices were used: the mean absolute error (MAE), the root-mean-square error (RMSE), and the relative root-mean-square error (RRMSE). Taking into account all indices the model of GRNN proved to be the most accurate which included coordinates of the sampling points and the distance to the likely emission source as input parameters for the modeling. Maps of spatial dust distribution in the snow cover were created in the study area. It has been shown that the models based on ANNs were more accurate than the kriging, particularly in the context of a limited data set. © 2017 Author(s).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Institute of Physics Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAIP Conference Proceedingsen
dc.subjectARTIFICIAL NEURAL NETWORKSen
dc.subjectKRIGINGen
dc.subjectMODELINGen
dc.subjectSNOW COVERen
dc.subjectSPATIAL DISTRIBUTIONen
dc.titleModeling of surface dust concentration in snow cover at industrial area using neural networks and krigingen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1063/1.4981973-
dc.identifier.scopus85021324104-
local.affiliationUral Federal University, Mira, 19, Ekaterinburg, 620002, Russian Federationen
local.affiliationInstitute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg, 620990, Russian Federationen
local.contributor.employeeSergeev, A.P., Ural Federal University, Mira, 19, Ekaterinburg, 620002, Russian Federation, Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg, 620990, Russian Federationru
local.contributor.employeeTarasov, D.A., Ural Federal University, Mira, 19, Ekaterinburg, 620002, Russian Federation, Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg, 620990, Russian Federationru
local.contributor.employeeBuevich, A.G., Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg, 620990, Russian Federationru
local.contributor.employeeShichkin, A.V., Ural Federal University, Mira, 19, Ekaterinburg, 620002, Russian Federation, Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg, 620990, Russian Federationru
local.contributor.employeeTyagunov, A.G., Ural Federal University, Mira, 19, Ekaterinburg, 620002, Russian Federationru
local.contributor.employeeMedvedev, A.N., Ural Federal University, Mira, 19, Ekaterinburg, 620002, Russian Federation, Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg, 620990, Russian Federationru
local.issue1836-
dc.identifier.wos000409539000033-
local.identifier.pure1931259-
local.description.order20033-
local.identifier.eid2-s2.0-85021324104-
local.identifier.wosWOS:000409539000033-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1063-1.4981973.pdf759,94 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.