Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/90152
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Sergeev, A. P. | en |
dc.contributor.author | Tarasov, D. A. | en |
dc.contributor.author | Buevich, A. G. | en |
dc.contributor.author | Subbotina, I. E. | en |
dc.contributor.author | Shichkin, A. V. | en |
dc.contributor.author | Sergeeva, M. V. | en |
dc.contributor.author | Lvova, O. A. | en |
dc.date.accessioned | 2020-09-29T09:46:12Z | - |
dc.date.available | 2020-09-29T09:46:12Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | High variation subarctic topsoil pollutant concentration prediction using neural network residual kriging / A. P. Sergeev, D. A. Tarasov, A. G. Buevich, I. E. Subbotina, et al. . — DOI 10.1063/1.4981963 // AIP Conference Proceedings. — 2017. — Iss. 1836. — 20023. | en |
dc.identifier.isbn | 9780735415065 | - |
dc.identifier.issn | 0094-243X | - |
dc.identifier.other | https://aip.scitation.org/doi/pdf/10.1063/1.4981963 | |
dc.identifier.other | 1 | good_DOI |
dc.identifier.other | d61a00ed-d4c1-4389-be41-4b38cd0b4708 | pure_uuid |
dc.identifier.other | http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85021363916 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/90152 | - |
dc.description.abstract | The work deals with the application of neural networks residual kriging (NNRK) to the spatial prediction of the abnormally distributed soil pollutant (Cr). It is known that combination of geostatistical interpolation approaches (kriging) and neural networks leads to significantly better prediction accuracy and productivity. Generalized regression neural networks and multilayer perceptrons are classes of neural networks widely used for the continuous function mapping. Each network has its own pros and cons; however both demonstrated fast training and good mapping possibilities. In the work, we examined and compared two combined techniques: generalized regression neural network residual kriging (GRNNRK) and multilayer perceptron residual kriging (MLPRK). The case study is based on the real data sets on surface contamination by chromium at a particular location of the subarctic Novy Urengoy, Russia, obtained during the previously conducted screening. The proposed models have been built, implemented and validated using ArcGIS and MATLAB environments. The networks structures have been chosen during a computer simulation based on the minimization of the RMSE. MLRPK showed the best predictive accuracy comparing to the geostatistical approach (kriging) and even to GRNNRK. © 2017 Author(s). | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | American Institute of Physics Inc. | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | AIP Conference Proceedings | en |
dc.subject | ARTIFICIAL NEURAL NETWORKS | en |
dc.subject | CHROMIUM | en |
dc.subject | GRNNRK | en |
dc.subject | MLPRK | en |
dc.subject | POLLUTION | en |
dc.subject | RESIDUAL KRIGING | en |
dc.title | High variation subarctic topsoil pollutant concentration prediction using neural network residual kriging | en |
dc.type | Conference Paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1063/1.4981963 | - |
dc.identifier.scopus | 85021363916 | - |
local.affiliation | Institute of Industrial Ecology, UB RAS, Kovalevskoy, 20, Ekaterinburg, 620990, Russian Federation | en |
local.affiliation | Institute of Radio-electronics and IT, Ural Federal University, Mira, 19, Ekaterinburg, 620002, Russian Federation | en |
local.contributor.employee | Sergeev, A.P., Institute of Industrial Ecology, UB RAS, Kovalevskoy, 20, Ekaterinburg, 620990, Russian Federation, Institute of Radio-electronics and IT, Ural Federal University, Mira, 19, Ekaterinburg, 620002, Russian Federation | ru |
local.contributor.employee | Tarasov, D.A., Institute of Industrial Ecology, UB RAS, Kovalevskoy, 20, Ekaterinburg, 620990, Russian Federation, Institute of Radio-electronics and IT, Ural Federal University, Mira, 19, Ekaterinburg, 620002, Russian Federation | ru |
local.contributor.employee | Buevich, A.G., Institute of Industrial Ecology, UB RAS, Kovalevskoy, 20, Ekaterinburg, 620990, Russian Federation | ru |
local.contributor.employee | Subbotina, I.E., Institute of Industrial Ecology, UB RAS, Kovalevskoy, 20, Ekaterinburg, 620990, Russian Federation | ru |
local.contributor.employee | Shichkin, A.V., Institute of Industrial Ecology, UB RAS, Kovalevskoy, 20, Ekaterinburg, 620990, Russian Federation, Institute of Radio-electronics and IT, Ural Federal University, Mira, 19, Ekaterinburg, 620002, Russian Federation | ru |
local.contributor.employee | Sergeeva, M.V., Institute of Industrial Ecology, UB RAS, Kovalevskoy, 20, Ekaterinburg, 620990, Russian Federation | ru |
local.contributor.employee | Lvova, O.A., Institute of Radio-electronics and IT, Ural Federal University, Mira, 19, Ekaterinburg, 620002, Russian Federation | ru |
local.issue | 1836 | - |
dc.identifier.wos | 000409539000023 | - |
local.identifier.pure | 1931633 | - |
local.description.order | 20023 | - |
local.identifier.eid | 2-s2.0-85021363916 | - |
local.identifier.wos | WOS:000409539000023 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.1063-1.4981963.pdf | 959,22 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.