Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90137
Название: Dynamic regimes of the stochastic “prey – predatory” model with competition and saturation
Авторы: Abramova, E. P.
Ryazanova, T. V.
Дата публикации: 2019
Издатель: Institute of Computer Science
Библиографическое описание: Abramova, E. P. Dynamic regimes of the stochastic “prey – predatory” model with competition and saturation / E. P. Abramova, T. V. Ryazanova. — DOI 10.20537/2076-7633-2019-11-3-515-531 // Computer Research and Modeling. — 2019. — Vol. 3. — Iss. 11. — P. 515-531.
Аннотация: We consider “predator – prey” model taking into account the competition of prey, predator for different from the prey resources, and their interaction described by the second type Holling trophic function. An analysis of the attractors is carried out depending on the coefficient of competition of predators. In the deterministic case, this model demonstrates the complex behavior associated with the local (Andronov – Hopf and saddle-node) and global (birth of a cycle from a separatrix loop) bifurcations. An important feature of this model is the disappearance of a stable cycle due to a saddle-node bifurcation. As a result of the presence of competition in both populations, parametric zones of mono- and bistability are observed. In parametric zones of bistability the system has either coexisting two equilibria or a cycle and equilibrium. Here, we investigate the geometrical arrangement of attractors and separatrices, which is the boundary of basins of attraction. Such a study is an important component in understanding of stochastic phenomena. In this model, the combination of the nonlinearity and random perturbations leads to the appearance of new phenomena with no analogues in the deterministic case, such as noise-induced transitions through the separatrix, stochastic excitability, and generation of mixed-mode oscillations. For the parametric study of these phenomena, we use the stochastic sensitivity function technique and the confidence domain method. In the bistability zones, we study the deformations of the equilibrium or oscillation regimes under stochastic perturbation. The geometric criterion for the occurrence of such qualitative changes is the intersection of confidence domains and the separatrix of the deterministic model. In the zone of monostability, we evolve the phenomena of explosive change in the size of population as well as extinction of one or both populations with minor changes in external conditions. With the help of the confidence domains method, we solve the problem of estimating the proximity of a stochastic population to dangerous boundaries, upon reaching which the coexistence of populations is destroyed and their extinction is observed. c 2019 Ekaterina P. Abramova, Tatyana V. Ryazanova.
Ключевые слова: BISTABILITY
POPULATION DYNAMICS
STOCHASTIC PHENOMENA
URI: http://elar.urfu.ru/handle/10995/90137
Условия доступа: info:eu-repo/semantics/openAccess
cc-by-nd
Идентификатор РИНЦ: 39452780
Идентификатор SCOPUS: 85071313362
Идентификатор PURE: 10472601
ISSN: 2076-7633
DOI: 10.20537/2076-7633-2019-11-3-515-531
Сведения о поддержке: Russian Science Foundation, RSF: 16-11-10098
This work was supported by Russian Science Foundation (No. 16-11-10098).
Карточка проекта РНФ: 16-11-10098
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.20537-2076-7633-2019-11-3-515-531.pdf1,54 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.