Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90122
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMironov, K.en
dc.contributor.authorGayanov, R.en
dc.contributor.authorKurennov, D.en
dc.date.accessioned2020-09-29T09:46:06Z-
dc.date.available2020-09-29T09:46:06Z-
dc.date.issued2019-
dc.identifier.citationMironov, K. Observing and forecasting the trajectory of the thrown body with use of genetic programming / K. Mironov, R. Gayanov, D. Kurennov. — DOI 10.25046/aj040124 // Advances in Science, Technology and Engineering Systems. — 2019. — Vol. 1. — Iss. 4. — P. 248-257.en
dc.identifier.issn2415-6698-
dc.identifier.otherhttps://astesj.com/?smd_process_download=1&download_id=5426pdf
dc.identifier.other1good_DOI
dc.identifier.other6eb112d2-dcc0-4956-9d23-bbe8e83b9368pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85069434855m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90122-
dc.description.abstractRobotic catching of thrown objects is one of the common robotic tasks, which is explored in a number of papers. This task includes subtask of tracking and forecasting the trajectory of the thrown object. Here we propose an algorithm for estimating future trajectory based on video signal from two cameras. Most of existing implementations use deterministic trajectory prediction and several are based on machine learning. We propose a combined forecasting algorithm where the deterministic motion model for each trajectory is generated via the genetic programming algorithm. Object trajectory is extracted from video sequence by the image processing algorithm, which include Canny edge detection, Random Sample Consensus circle recognition and stereo triangulation. After that rajectory is forecasted using proposed method. Numerical experiments with real trajectories of the thrown tennis ball show that the algorithm is able to forecast the trajectory accurately. © 2019 ASTES Publishers. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherASTES Publishersen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-by-saother
dc.sourceAdvances in Science, Technology and Engineering Systemsen
dc.subjectFORECASTINGen
dc.subjectGENETIC PROGRAMMINGen
dc.subjectMACHINE LEARNINGen
dc.subjectMACHINE VISIONen
dc.subjectROBOTIC CATCHINGen
dc.titleObserving and forecasting the trajectory of the thrown body with use of genetic programmingen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.25046/aj040124-
dc.identifier.scopus85069434855-
local.affiliationInstitute of New Materials and Technologies, Ural Federal University620002, Russian Federationen
local.affiliationFaculty of Computer Science and Robotics, Ufa State Aviation Technical University450008, Russian Federationen
local.contributor.employeeMironov, K., Institute of New Materials and Technologies, Ural Federal University620002, Russian Federation, Faculty of Computer Science and Robotics, Ufa State Aviation Technical University450008, Russian Federationru
local.contributor.employeeGayanov, R., Faculty of Computer Science and Robotics, Ufa State Aviation Technical University450008, Russian Federationru
local.contributor.employeeKurennov, D., Institute of New Materials and Technologies, Ural Federal University620002, Russian Federationru
local.description.firstpage248-
local.description.lastpage257-
local.issue4-
local.volume1-
local.identifier.pure10262793-
local.identifier.eid2-s2.0-85069434855-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.25046-aj040124.pdf814,44 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.