Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90076
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorFlores, S.en
dc.contributor.authorMacías-Díaz, J. E.en
dc.contributor.authorHendy, A. S.en
dc.date.accessioned2020-09-29T09:45:54Z-
dc.date.available2020-09-29T09:45:54Z-
dc.date.issued2019-
dc.identifier.citationFlores, S. Discrete monotone method for space-fractional nonlinear reaction–diffusion equations / S. Flores, J. E. Macías-Díaz, A. S. Hendy. — DOI 10.1186/s13662-019-2267-1 // Advances in Difference Equations. — 2019. — Vol. 1. — Iss. 2019. — 317.en
dc.identifier.issn1687-1839-
dc.identifier.otherhttps://advancesindifferenceequations.springeropen.com/track/pdf/10.1186/s13662-019-2267-1pdf
dc.identifier.other1good_DOI
dc.identifier.other759fc508-0ff7-48eb-aac9-833f7796d6e9pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85070193052m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90076-
dc.description.abstractA discrete monotone iterative method is reported here to solve a space-fractional nonlinear diffusion–reaction equation. More precisely, we propose a Crank–Nicolson discretization of a reaction–diffusion system with fractional spatial derivative of the Riesz type. The finite-difference scheme is based on the use of fractional-order centered differences, and it is solved using a monotone iterative technique. The existence and uniqueness of solutions of the numerical model are analyzed using this approach, along with the technique of upper and lower solutions. This methodology is employed also to prove the main numerical properties of the technique, namely, the consistency, stability, and convergence. As an application, the particular case of the space-fractional Fisher’s equation is theoretically analyzed in full detail. In that case, the monotone iterative method guarantees the preservation of the positivity and the boundedness of the numerical approximations. Various numerical examples are provided to illustrate the validity of the numerical approximations. More precisely, we provide an extensive series of comparisons against other numerical methods available in the literature, we show detailed numerical analyses of convergence in time and in space against fractional and integer-order models, and we provide studies on the robustness and the numerical performance of the discrete monotone method. © 2019, The Author(s).en
dc.description.sponsorshipRussian Foundation for Basic Research, RFBR: 19-01-00019en
dc.description.sponsorshipConsejo Nacional de Ciencia y Tecnología, CONACYT: A1-S-45928en
dc.description.sponsorshipThe first author would like to acknowledge the financial support of the National Council for Science and Technology of Mexico (CONACYT). The second (and corresponding) author acknowledges financial support from CONACYT through grant A1-S-45928. ASH is financed by RFBR Grant 19-01-00019.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringer International Publishingen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.sourceAdvances in Difference Equationsen
dc.subjectCRANK–NICOLSON FINITE-DIFFERENCE SCHEMEen
dc.subjectDISCRETE MONOTONE ITERATIVE METHODen
dc.subjectEXISTENCE AND UNIQUENESS OF SOLUTIONSen
dc.subjectNUMERICAL EFFICIENCY ANALYSISen
dc.subjectSPACE-FRACTIONAL DIFFUSION–REACTION EQUATIONSen
dc.titleDiscrete monotone method for space-fractional nonlinear reaction–diffusion equationsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1186/s13662-019-2267-1-
dc.identifier.scopus85070193052-
local.affiliationDepartamento de Matemáticas y Física, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexicoen
local.affiliationDepartment of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russian Federationen
local.affiliationDepartment of Mathematics, Faculty of Science, Benha University, Benha, Egypten
local.contributor.employeeFlores, S., Departamento de Matemáticas y Física, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexicoru
local.contributor.employeeMacías-Díaz, J.E., Departamento de Matemáticas y Física, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexicoru
local.contributor.employeeHendy, A.S., Department of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russian Federation, Department of Mathematics, Faculty of Science, Benha University, Benha, Egyptru
local.issue2019-
local.volume1-
dc.identifier.wos000478914900001-
local.identifier.pure10469438-
local.description.order317-
local.identifier.eid2-s2.0-85070193052-
local.fund.rffi19-01-00019-
local.identifier.wosWOS:000478914900001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1186-s13662-019-2267-1.pdf3,28 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.