Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/90073
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChentsov, A. G.en
dc.date.accessioned2020-09-29T09:45:53Z-
dc.date.available2020-09-29T09:45:53Z-
dc.date.issued2019-
dc.identifier.citationChentsov, A. G. On the supercompactness of ultrafilter space with the topology of Wallman type / A. G. Chentsov. — DOI 10.20537/2226-3594-2019-54-07 // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. — 2019. — Iss. 54. — P. 74-101.en
dc.identifier.issn2226-3594-
dc.identifier.otherhttp://www.mathnet.ru/php/getFT.phtml?jrnid=iimi&paperid=384&what=fullt&option_lang=engpdf
dc.identifier.other1good_DOI
dc.identifier.other1115c613-6af5-4d82-a260-aaa747959e36pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85079134759m
dc.identifier.urihttp://hdl.handle.net/10995/90073-
dc.identifier.urihttps://elar.urfu.ru/handle/10995/90073en
dc.description.abstractThis paper is concerned with ultrafilters and maximal linked systems of widely understood measurable spaces (nonempty sets with π-systems of its subsets are meant). The sets of ultrafilters and maximal linked systems are transformed to bitopological spaces by applying constructions that (in idea) meet the Wallman and Stone schemes. The focus is on ultrafilter space with topology of Wallman type. Conditions on the initial π-system for which the given space is supercompact are specified. Concrete classes of (widely understood) measurable spaces are listed for which the above-mentioned conditions are realized. Special attention is also given to one abstract problem of attainability under conditions when the choice of a concrete solution may have the following uncertainty: the set defining constraints can be an arbitrary element of a given nonempty family. The question of the existence of universally realized (in limit) elements in the space of values of the goal operator in our problem is considered. To obtain sufficient solutions, the supercompactness property of the ultrafilter space for special measurable structure is used; this structure is sufficient (under corresponding suppositions) for realization of all variants of constraints on the choice of a usual solution (control). © 2019 А. Г. Ченцов.en
dc.description.sponsorshipRussian Foundation for Basic Research, RFBR: 18–01–00410en
dc.description.sponsorshipFunding. The research was funded by the Russian Foundation for Basic Research, project number 18–01–00410.en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherUdmurt State Universityen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIzvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universitetaen
dc.subjectMAXIMAL LINKED SYSTEMen
dc.subjectTOPOLOGYen
dc.subjectULTRAFILTERen
dc.titleOn the supercompactness of ultrafilter space with the topology of Wallman typeen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi41435143-
dc.identifier.doi10.20537/2226-3594-2019-54-07-
dc.identifier.scopus85079134759-
local.affiliationN. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620219, Russian Federationen
local.affiliationUral Federal University, ul. Mira, 19, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeChentsov, A.G., N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620219, Russian Federation, Ural Federal University, ul. Mira, 19, Yekaterinburg, 620002, Russian Federationru
local.description.firstpage74-
local.description.lastpage101-
local.issue54-
dc.identifier.wos000512131100007-
local.identifier.pure11456496-
local.identifier.eid2-s2.0-85079134759-
local.fund.rffi18-01-00410-
local.identifier.wosWOS:000512131100007-
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.20537-2226-3594-2019-54-07.pdf312,27 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.