Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90037
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorGalenko, P. K.en
dc.contributor.authorAlexandrov, D. V.en
dc.contributor.authorTitova, E. A.en
dc.date.accessioned2020-09-29T09:45:44Z-
dc.date.available2020-09-29T09:45:44Z-
dc.date.issued2018-
dc.identifier.citationGalenko, P. K. The boundary integral theory for slow and rapid curved solid/liquid interfaces propagating into binary systems / P. K. Galenko, D. V. Alexandrov, E. A. Titova. — DOI 10.1098/rsta.2017.0218 // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 2018. — Vol. 2113. — Iss. 376. — 20170218.en
dc.identifier.issn1364-503X-
dc.identifier.otherhttps://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2017.0218pdf
dc.identifier.other1good_DOI
dc.identifier.other9a9e1d13-a8d9-4320-8822-93f911cb0914pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85040634206m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90037-
dc.description.abstractThe boundary integral method for propagating solid/liquid interfaces is detailed with allowance for the thermo-solutal Stefan-type models. Two types of mass transfer mechanisms corresponding to the local equilibrium (parabolic-type equation) and local non-equilibrium (hyperbolic-type equation) solidification conditions are considered. A unified integro-differential equation for the curved interface is derived. This equation contains the steady-state conditions of solidification as a special case. The boundary integral analysis demonstrates how to derive the quasi-stationary Ivantsov and Horvay–Cahn solutions that, respectively, define the paraboloidal and elliptical crystal shapes. In the limit of highest Péclet numbers, these quasi-stationary solutions describe the shape of the area around the dendritic tip in the form of a smooth sphere in the isotropic case and a deformed sphere along the directions of anisotropy strength in the anisotropic case. A thermo-solutal selection criterion of the quasi-stationary growth mode of dendrites which includes arbitrary Péclet numbers is obtained. To demonstrate the selection of patterns, computational modelling of the quasi-stationary growth of crystals in a binary mixture is carried out. © 2018 The Author(s) Published by the Royal Society. All rights reserved.en
dc.description.sponsorshipRussian Science Foundation, RSF: 16-11-10095en
dc.description.sponsorship50WM1541en
dc.description.sponsorshipData accessibility. This article has no additional data. Authors’ contributions. All authors contributed equally to the present review paper. Competing interests. The authors declare that they have no competing interests. Funding. This work was supported by the Russian Science Foundation (grant no. 16-11-10095) and the German Space Center Space Management under contract no. 50WM1541.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherRoyal Society Publishingen
dc.relationinfo:eu-repo/grantAgreement/RSF//16-11-10095en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciencesen
dc.subjectBOUNDARY INTEGRAL METHODen
dc.subjectCRYSTAL GROWTHen
dc.subjectHORVAY–CAHN SOLUTIONSen
dc.subjectHYPERBOLIC TRANSPORT EQUATIONSen
dc.subjectIVANTSOVen
dc.subjectPARABOLICen
dc.subjectPHASE TRANSITIONSen
dc.subjectPROPAGATION OF CURVED INTERFACESen
dc.subjectANISOTROPYen
dc.subjectCOMPUTATION THEORYen
dc.subjectCRYSTAL GROWTHen
dc.subjectINTEGRODIFFERENTIAL EQUATIONSen
dc.subjectMASS TRANSFERen
dc.subjectPHASE TRANSITIONSen
dc.subjectSOLIDIFICATIONen
dc.subjectBOUNDARY INTEGRAL METHODSen
dc.subjectCURVED INTERFACEen
dc.subjectHYPERBOLIC TRANSPORT EQUATIONSen
dc.subjectIVANTSOVen
dc.subjectPARABOLICen
dc.subjectBINARY MIXTURESen
dc.titleThe boundary integral theory for slow and rapid curved solid/liquid interfaces propagating into binary systemsen
dc.typeReviewen
dc.typeinfo:eu-repo/semantics/reviewen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1098/rsta.2017.0218-
dc.identifier.scopus85040634206-
local.affiliationPhysikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität Jena, Jena, 07743, Germanyen
local.affiliationDepartment of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeGalenko, P.K., Physikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität Jena, Jena, 07743, Germanyru
local.contributor.employeeAlexandrov, D.V., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federationru
local.contributor.employeeTitova, E.A., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federationru
local.issue376-
local.volume2113-
dc.identifier.wos000419529400015-
local.identifier.pure6432558-
local.description.order20170218-
local.identifier.eid2-s2.0-85040634206-
local.fund.rsf16-11-10095-
local.identifier.wosWOS:000419529400015-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1098-rsta.2017.0218.pdf1,37 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.