Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/90037
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Galenko, P. K. | en |
dc.contributor.author | Alexandrov, D. V. | en |
dc.contributor.author | Titova, E. A. | en |
dc.date.accessioned | 2020-09-29T09:45:44Z | - |
dc.date.available | 2020-09-29T09:45:44Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Galenko, P. K. The boundary integral theory for slow and rapid curved solid/liquid interfaces propagating into binary systems / P. K. Galenko, D. V. Alexandrov, E. A. Titova. — DOI 10.1098/rsta.2017.0218 // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 2018. — Vol. 2113. — Iss. 376. — 20170218. | en |
dc.identifier.issn | 1364-503X | - |
dc.identifier.other | https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2017.0218 | |
dc.identifier.other | 1 | good_DOI |
dc.identifier.other | 9a9e1d13-a8d9-4320-8822-93f911cb0914 | pure_uuid |
dc.identifier.other | http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85040634206 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/90037 | - |
dc.description.abstract | The boundary integral method for propagating solid/liquid interfaces is detailed with allowance for the thermo-solutal Stefan-type models. Two types of mass transfer mechanisms corresponding to the local equilibrium (parabolic-type equation) and local non-equilibrium (hyperbolic-type equation) solidification conditions are considered. A unified integro-differential equation for the curved interface is derived. This equation contains the steady-state conditions of solidification as a special case. The boundary integral analysis demonstrates how to derive the quasi-stationary Ivantsov and Horvay–Cahn solutions that, respectively, define the paraboloidal and elliptical crystal shapes. In the limit of highest Péclet numbers, these quasi-stationary solutions describe the shape of the area around the dendritic tip in the form of a smooth sphere in the isotropic case and a deformed sphere along the directions of anisotropy strength in the anisotropic case. A thermo-solutal selection criterion of the quasi-stationary growth mode of dendrites which includes arbitrary Péclet numbers is obtained. To demonstrate the selection of patterns, computational modelling of the quasi-stationary growth of crystals in a binary mixture is carried out. © 2018 The Author(s) Published by the Royal Society. All rights reserved. | en |
dc.description.sponsorship | Russian Science Foundation, RSF: 16-11-10095 | en |
dc.description.sponsorship | 50WM1541 | en |
dc.description.sponsorship | Data accessibility. This article has no additional data. Authors’ contributions. All authors contributed equally to the present review paper. Competing interests. The authors declare that they have no competing interests. Funding. This work was supported by the Russian Science Foundation (grant no. 16-11-10095) and the German Space Center Space Management under contract no. 50WM1541. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Royal Society Publishing | en |
dc.relation | info:eu-repo/grantAgreement/RSF//16-11-10095 | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences | en |
dc.subject | BOUNDARY INTEGRAL METHOD | en |
dc.subject | CRYSTAL GROWTH | en |
dc.subject | HORVAY–CAHN SOLUTIONS | en |
dc.subject | HYPERBOLIC TRANSPORT EQUATIONS | en |
dc.subject | IVANTSOV | en |
dc.subject | PARABOLIC | en |
dc.subject | PHASE TRANSITIONS | en |
dc.subject | PROPAGATION OF CURVED INTERFACES | en |
dc.subject | ANISOTROPY | en |
dc.subject | COMPUTATION THEORY | en |
dc.subject | CRYSTAL GROWTH | en |
dc.subject | INTEGRODIFFERENTIAL EQUATIONS | en |
dc.subject | MASS TRANSFER | en |
dc.subject | PHASE TRANSITIONS | en |
dc.subject | SOLIDIFICATION | en |
dc.subject | BOUNDARY INTEGRAL METHODS | en |
dc.subject | CURVED INTERFACE | en |
dc.subject | HYPERBOLIC TRANSPORT EQUATIONS | en |
dc.subject | IVANTSOV | en |
dc.subject | PARABOLIC | en |
dc.subject | BINARY MIXTURES | en |
dc.title | The boundary integral theory for slow and rapid curved solid/liquid interfaces propagating into binary systems | en |
dc.type | Review | en |
dc.type | info:eu-repo/semantics/review | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1098/rsta.2017.0218 | - |
dc.identifier.scopus | 85040634206 | - |
local.affiliation | Physikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität Jena, Jena, 07743, Germany | en |
local.affiliation | Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation | en |
local.contributor.employee | Galenko, P.K., Physikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität Jena, Jena, 07743, Germany | ru |
local.contributor.employee | Alexandrov, D.V., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation | ru |
local.contributor.employee | Titova, E.A., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation | ru |
local.issue | 376 | - |
local.volume | 2113 | - |
dc.identifier.wos | 000419529400015 | - |
local.identifier.pure | 6432558 | - |
local.description.order | 20170218 | - |
local.identifier.eid | 2-s2.0-85040634206 | - |
local.fund.rsf | 16-11-10095 | - |
local.identifier.wos | WOS:000419529400015 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.1098-rsta.2017.0218.pdf | 1,37 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.