Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/89977
Название: Mathematical model of the competition life cycle under limited resources conditions: Problem statement for business community
Авторы: Shelomentsev, A. G.
Medvedev, M. A.
Berg, D. B.
Lapshina, S. N.
Taubayev, A. A.
Davletbaev, R. H.
Savina, D. V.
Дата публикации: 2017
Издатель: American Institute of Physics Inc.
Библиографическое описание: Mathematical model of the competition life cycle under limited resources conditions: Problem statement for business community / A. G. Shelomentsev, M. A. Medvedev, D. B. Berg, S. N. Lapshina, et al. . — DOI 10.1063/1.5013959 // AIP Conference Proceedings. — 2017. — Iss. 1910. — 20022.
Аннотация: Present study is devoted to the development of competition life cycle mathematical model in the closed business community with limited resources. Growth of each agent is determined by the balance of input and output resource flows: input (cash) flow W is covering the variable V and constant C costs and growth dA/dt of the agent's assets A. Value of V is proportional to assets A that allows us to write down a first order non-stationary differential equation of the agent growth. Model includes the number of such equations due to the number of agents. The amount of resources that is available for agents vary in time. The balances of their input and output flows are changing correspondingly to the different stages of the competition life cycle. According to the theory of systems, the most complete description of any object or process is the model of its life cycle. Such a model describes all stages of its development: from the appearance ("birth") through development ("growth") to extinction ("death"). The model of the evolution of an individual firm, not contradicting the economic meaning of events actually observed in the market, is the desired result from modern AVMs for applied use. With a correct description of the market, rules for participants' actions, restrictions, forecasts can be obtained, which modern mathematics and the economy can not give. © 2017 Author(s).
URI: http://elar.urfu.ru/handle/10995/89977
Условия доступа: info:eu-repo/semantics/openAccess
Идентификатор SCOPUS: 85038924360
Идентификатор WOS: 000423866900022
Идентификатор PURE: 6254534
ISSN: 0094-243X
ISBN: 9780735416024
DOI: 10.1063/1.5013959
Сведения о поддержке: 15-06-04863
Present study was carried out under financial support of the Russian Fund of Fundamental Research grant № 15-06-04863 "Mathematical models of local payment system lifecycles".
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1063-1.5013959.pdf823,1 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.