Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/89966
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorLebedev, P. D.en
dc.contributor.authorUspenskii, A. A.en
dc.date.accessioned2020-09-29T09:45:26Z-
dc.date.available2020-09-29T09:45:26Z-
dc.date.issued2019-
dc.identifier.citationLebedev, P. D. Construction of a solution to a velocity problem in the case of violation of the smoothness of the curvature of the target set boundary / P. D. Lebedev, A. A. Uspenskii. — DOI 10.20537/2226-3594-2019-53-09 // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. — 2019. — Iss. 53. — P. 98-114.en
dc.identifier.issn2226-3594-
dc.identifier.otherhttp://www.mathnet.ru/php/getFT.phtml?jrnid=iimi&paperid=374&what=fullt&option_lang=engpdf
dc.identifier.other1good_DOI
dc.identifier.other65e2d346-5636-4ae9-b1cb-13fd512a307bpure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85079117490m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/89966-
dc.description.abstractFor the development of analytical and numerical algorithms for constructing nonsmooth solutions of optimal control problems, procedures are proposed for constructing scattering curves for a single class of control velocity problems. We consider the reduction problems for a minimal time of solutions of a dynamical system with a circular velocity vectogram for the case where the target set is generally nonconvex, and its boundary has points at which the curvature smoothness is violated. These points are referred to as pseudovertices, the characteristic points of the target set, which are responsible for the occurrence of the singularity of the optimal result function. When forming a proper reparameterization (in this case, taking into account the geometry of the velocity vector diagram) of the arc of the boundary of the target set containing a pseudovertex, the scattering curve is constructed as an integral curve. Moreover, the initial conditions of the corresponding Cauchy problem are determined by the properties of the pseudovertex. One of the numerical characteristics of the pseudovertex, the pseudovertex marker, determines the initial velocity of the material point describing a smooth portion of the scattering curve. This approach to the identification and construction (in analytical or numerical form) of singular curves was previously substantiated for a number of cases of a target boundary that are different in the order of smoothness. It should be emphasized that the case considered in this paper is the most specific, in particular, because of the revealed connection between the dynamic problem and the problem of polynomial algebra. It is proved that the pseudovertex marker is the nonpositive root of some third-order polynomial whose coefficients are determined by the one-sided derivatives of curvatures of the pseudovertex of the target set. The effectiveness of the developed theoretical methods and numerical procedures is illustrated by specific examples. © 2019 Udmurt State University. All right reserved.en
dc.description.sponsorshipRussian Science Foundation, RSF: 19–11–00105en
dc.description.sponsorshipFunding. P. Lebedev’s research is supported by the Russian Science Foundation (project no. 19–11–00105).en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherUdmurt State Universityen
dc.relationinfo:eu-repo/grantAgreement/RSF//19-11-00105en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIzvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universitetaen
dc.subjectBISECTOR OF A SETen
dc.subjectCURVATUREen
dc.subjectDISPERSING CURVEen
dc.subjectOPTIMAL RESULT FUNCTIONen
dc.subjectPSEUDOVERTEXen
dc.subjectVELOCITY PROBLEMen
dc.titleConstruction of a solution to a velocity problem in the case of violation of the smoothness of the curvature of the target set boundaryen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi38503202-
dc.identifier.doi10.20537/2226-3594-2019-53-09-
dc.identifier.scopus85079117490-
local.affiliationDepartment of Dynamical Systems, Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620990, Russian Federationen
local.affiliationUral Federal University, ul. Mira, 19, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeLebedev, P.D., Department of Dynamical Systems, Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620990, Russian Federation, Ural Federal University, ul. Mira, 19, Yekaterinburg, 620002, Russian Federationru
local.contributor.employeeUspenskii, A.A., Department of Dynamical Systems, Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620990, Russian Federation, Ural Federal University, ul. Mira, 19, Yekaterinburg, 620002, Russian Federationru
local.description.firstpage98-
local.description.lastpage114-
local.issue53-
dc.identifier.wos000487290700009-
local.identifier.pure10353289-
local.identifier.eid2-s2.0-85079117490-
local.fund.rsf19-11-00105-
local.identifier.wosWOS:000487290700009-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.20537-2226-3594-2019-53-09.pdf823,6 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.