Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/75713
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rytter, W. | en |
dc.contributor.author | Shur, A. M. | en |
dc.date.accessioned | 2019-07-22T06:48:19Z | - |
dc.date.available | 2019-07-22T06:48:19Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | Rytter W. Searching for Zimin patterns / W. Rytter, A. M. Shur // Theoretical Computer Science. — 2015. — Vol. 571. — Iss. C. — P. 50-57. | en |
dc.identifier.issn | 0304-3975 | - |
dc.identifier.other | http://arxiv.org/pdf/1409.8235.pdf | |
dc.identifier.other | 1 | good_DOI |
dc.identifier.other | 29bb081b-790b-4942-bfe0-a955739f385f | pure_uuid |
dc.identifier.other | http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=84926295625 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/75713 | - |
dc.description.abstract | In the area of pattern avoidability the central role is played by special words called Zimin patterns. The symbols of these patterns are treated as variables and the rank of the pattern is its number of variables. Zimin type of a word x is introduced here as the maximum rank of a Zimin pattern matching x. We show how to compute Zimin type of a word on-line in linear time. Consequently we get a quadratic time, linear-space algorithm for searching Zimin patterns in words. Then we demonstrate how the Zimin type of the length n prefix of the infinite Fibonacci word is related to the representation of n in the Fibonacci numeration system. Using this relation, we prove that Zimin types of such prefixes and Zimin patterns inside them can be found in logarithmic time. Finally, we give some upper bounds on the function f( n, k) such that every k-ary word of length at least f( n, k) has a factor that matches the rank n Zimin pattern. © 2015 Elsevier B.V. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Theoretical Computer Science | en |
dc.subject | FIBONACCI WORD | en |
dc.subject | ON-LINE ALGORITHM | en |
dc.subject | UNAVOIDABLE PATTERN | en |
dc.subject | ZIMIN WORD | en |
dc.subject | BINARY SEQUENCES | en |
dc.subject | NUMBER THEORY | en |
dc.subject | PATTERN MATCHING | en |
dc.subject | FIBONACCI WORD | en |
dc.subject | INFINITE FIBONACCI WORD | en |
dc.subject | LINEAR SPACE ALGORITHMS | en |
dc.subject | LOGARITHMIC TIME | en |
dc.subject | NUMERATION SYSTEMS | en |
dc.subject | ON-LINE ALGORITHMS | en |
dc.subject | UNAVOIDABLE PATTERN | en |
dc.subject | ZIMIN WORDS | en |
dc.subject | SOCIAL NETWORKING (ONLINE) | en |
dc.title | Searching for Zimin patterns | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1016/j.tcs.2015.01.004 | - |
dc.identifier.scopus | 84926295625 | - |
local.affiliation | Institute of Informatics, Warsaw University, Poland | en |
local.affiliation | Institute of Mathematics and Computer Science, Ural Federal University, Ekaterinburg, Russian Federation | en |
local.contributor.employee | Шур Арсений Михайлович | ru |
local.description.firstpage | 50 | - |
local.description.lastpage | 57 | - |
local.issue | C | - |
local.volume | 571 | - |
dc.identifier.wos | 000349875700005 | - |
local.identifier.pure | 353003 | - |
local.identifier.eid | 2-s2.0-84926295625 | - |
local.identifier.wos | WOS:000349875700005 | - |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10.1016-j.tcs.2015.01.004.pdf | 364,18 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.