Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/75713
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRytter, W.en
dc.contributor.authorShur, A. M.en
dc.date.accessioned2019-07-22T06:48:19Z-
dc.date.available2019-07-22T06:48:19Z-
dc.date.issued2015-
dc.identifier.citationRytter W. Searching for Zimin patterns / W. Rytter, A. M. Shur // Theoretical Computer Science. — 2015. — Vol. 571. — Iss. C. — P. 50-57.en
dc.identifier.issn0304-3975-
dc.identifier.otherhttp://arxiv.org/pdf/1409.8235.pdfpdf
dc.identifier.other1good_DOI
dc.identifier.other29bb081b-790b-4942-bfe0-a955739f385fpure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=84926295625m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/75713-
dc.description.abstractIn the area of pattern avoidability the central role is played by special words called Zimin patterns. The symbols of these patterns are treated as variables and the rank of the pattern is its number of variables. Zimin type of a word x is introduced here as the maximum rank of a Zimin pattern matching x. We show how to compute Zimin type of a word on-line in linear time. Consequently we get a quadratic time, linear-space algorithm for searching Zimin patterns in words. Then we demonstrate how the Zimin type of the length n prefix of the infinite Fibonacci word is related to the representation of n in the Fibonacci numeration system. Using this relation, we prove that Zimin types of such prefixes and Zimin patterns inside them can be found in logarithmic time. Finally, we give some upper bounds on the function f( n, k) such that every k-ary word of length at least f( n, k) has a factor that matches the rank n Zimin pattern. © 2015 Elsevier B.V.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevieren
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceTheoretical Computer Scienceen
dc.subjectFIBONACCI WORDen
dc.subjectON-LINE ALGORITHMen
dc.subjectUNAVOIDABLE PATTERNen
dc.subjectZIMIN WORDen
dc.subjectBINARY SEQUENCESen
dc.subjectNUMBER THEORYen
dc.subjectPATTERN MATCHINGen
dc.subjectFIBONACCI WORDen
dc.subjectINFINITE FIBONACCI WORDen
dc.subjectLINEAR SPACE ALGORITHMSen
dc.subjectLOGARITHMIC TIMEen
dc.subjectNUMERATION SYSTEMSen
dc.subjectON-LINE ALGORITHMSen
dc.subjectUNAVOIDABLE PATTERNen
dc.subjectZIMIN WORDSen
dc.subjectSOCIAL NETWORKING (ONLINE)en
dc.titleSearching for Zimin patternsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.tcs.2015.01.004-
dc.identifier.scopus84926295625-
local.affiliationInstitute of Informatics, Warsaw University, Polanden
local.affiliationInstitute of Mathematics and Computer Science, Ural Federal University, Ekaterinburg, Russian Federationen
local.contributor.employeeШур Арсений Михайловичru
local.description.firstpage50-
local.description.lastpage57-
local.issueC-
local.volume571-
dc.identifier.wos000349875700005-
local.identifier.pure353003-
local.identifier.eid2-s2.0-84926295625-
local.identifier.wosWOS:000349875700005-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1016-j.tcs.2015.01.004.pdf364,18 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.