Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/75615
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorDierckx, H.en
dc.contributor.authorPanfilov, A. V.en
dc.contributor.authorVerschelde, H.en
dc.contributor.authorBiktashev, V. N.en
dc.contributor.authorBiktasheva, I. V.en
dc.date.accessioned2019-07-22T06:48:01Z-
dc.date.available2019-07-22T06:48:01Z-
dc.date.issued2019-
dc.identifier.citationResponse function framework for the dynamics of meandering or large-core spiral waves and modulated traveling waves / H. Dierckx, A. V. Panfilov, H. Verschelde et al. // Physical Review E. — 2019. — Vol. 99. — Iss. 2. — 22217.en
dc.identifier.issn2470-0045-
dc.identifier.otherhttps://doi.org/10.1103/physreve.99.022217pdf
dc.identifier.other1good_DOI
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85062470046m
dc.identifier.otherfffa4a01-20c9-48fa-a361-f95ef7ed97d2pure_uuid
dc.identifier.urihttp://elar.urfu.ru/handle/10995/75615-
dc.description.abstractIn many oscillatory or excitable systems, dynamical patterns emerge which are stationary or periodic in a moving frame of reference. Examples include traveling waves or spiral waves in chemical systems or cardiac tissue. We present a unified theoretical framework for the drift of such patterns under small external perturbations, in terms of overlap integrals between the perturbation and the adjoint critical eigenfunctions of the linearized operator (i.e., response functions). For spiral waves, the finite radius of the spiral tip trajectory and spiral wave meander are taken into account. Different coordinate systems can be chosen, depending on whether one wants to predict the motion of the spiral-wave tip, the time-averaged tip path, or the center of the meander flower. The framework is applied to analyze the drift of a meandering spiral wave in a constant external field in different regimes. © 2019 authors. Published by the American Physical Society.en
dc.description.sponsorshipThis research was supported in part the EPSRC Grants No. EP/E018548/1, EP/D074789/1, EP/P008690/1, EP/N014391/1, and EP/E016391/1 (UK), National Science Foundation Grants No. NSF PHY-1748958, NIH Grant No. R25GM067110, and the Gordon and Betty Moore Foundation Grant No. 2919.01 (USA).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Physical Societyen
dc.relationinfo:eu-repo/grantAgreement/NSF/PHY/1748958en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhysical Review Een
dc.subjectEIGENVALUES AND EIGENFUNCTIONSen
dc.subjectMOLECULAR ORBITALSen
dc.subjectWAVE FUNCTIONSen
dc.subjectCO-ORDINATE SYSTEMen
dc.subjectEXCITABLE SYSTEMSen
dc.subjectEXTERNAL PERTURBATIONSen
dc.subjectLINEARIZED OPERATORSen
dc.subjectMEANDERING SPIRAL WAVESen
dc.subjectOVERLAP INTEGRALSen
dc.subjectRESPONSE FUNCTIONSen
dc.subjectTHEORETICAL FRAMEWORKen
dc.subjectCHEMICAL BONDSen
dc.titleResponse function framework for the dynamics of meandering or large-core spiral waves and modulated traveling wavesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1103/PhysRevE.99.022217-
dc.identifier.scopus85062470046-
local.affiliationDepartment of Physics and Astronomy, Ghent University, Ghent, 9000, Belgiumen
local.affiliationLaboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, 620075, Russian Federationen
local.affiliationCollege of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdomen
local.affiliationDepartment of Computer Science, University of Liverpool, Liverpool, L69 3BX, United Kingdomen
local.contributor.employeeПанфилов Александр Викторовичru
local.issue2-
local.volume99-
dc.identifier.wos000459916000005-
local.identifier.pure9074451-
local.description.order22217-
local.identifier.eid2-s2.0-85062470046-
local.fund.nsf1748958-
local.identifier.wosWOS:000459916000005-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85062470046.pdf2,43 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.