Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/75454
Название: Effects of Sliding Velocity and Thermal Conduction of the Tool on X20Cr4 Steel Friction Coefficient and Structure in Nanostructuring Burnishing
Авторы: Kuznetsov, V. P.
Skorobogatov, A. S.
Lobanov, M. L.
Yurovskih, A. S.
Khadyev, M. S.
Karabanalov, M. S.
Дата публикации: 2018
Издатель: Institute of Physics Publishing
Библиографическое описание: Effects of Sliding Velocity and Thermal Conduction of the Tool on X20Cr4 Steel Friction Coefficient and Structure in Nanostructuring Burnishing / V. P. Kuznetsov, A. S. Skorobogatov, M. L. Lobanov et al. // Journal of Physics: Conference Series. — 2018. — Vol. 1045. — Iss. 1. — 12002.
Аннотация: The developmental study has succeeded in finding how the sliding velocity of an indenter affects the friction coefficient and changes the structure and phase state in the surface layer of a X20Cr13 stainless steel when nanostructuring burnishing is done with a tool with no heat removal and, alternatively, when the tool is equipped with a cooling system. It has been shown that structural dispersion of the treated material results in obtaining 20⋯80 nm nanocrystallites if the friction coefficient of the spherical synthetic diamond indenter is within 0.15⋯0.18 nm. Application of a compact cooling system, based on Peltier's thermoelectric module, made it possible to stabilize the friction coefficient at 0.17 and to increase the sliding velocity from 13 m/min, this being the case of no heat removal, to 45 m/min in the case when the cooling system having a cooling performance of 120 W was used. TEM and SEM analyses of the surface layer structure confirmed that there is a correlation between the friction coefficient and the size of nanocrystallites and the thickness of the dispersed layer. EBSD analysis of the structure showed that a maximum permissible sliding velocity can be established as referenced to the nucleation and growth of γ-phase grains in the nanostructured layer caused by heating of the material under deformation and reaching the temperature beyond the point α→γ phase transition as well as by behavior of dynamic recrystallization. It was established that the heat removal ensures suppression of dynamic recrystallization when the sliding velocity is increased up to 50 m/min. © 2018 Published under licence by IOP Publishing Ltd.
Ключевые слова: BURNISHING
COOLING
COOLING SYSTEMS
DISPERSIONS
DYNAMIC RECRYSTALLIZATION
ELASTICITY
INTEGRATED CIRCUITS
NANOCRYSTALLITES
NANOCRYSTALS
SYNTHETIC DIAMONDS
THERMOELECTRIC EQUIPMENT
THERMOELECTRICITY
VELOCITY
COOLING PERFORMANCE
FRICTION COEFFICIENTS
NANO-STRUCTURED LAYER
NANO-STRUCTURING
NUCLEATION AND GROWTH
SLIDING VELOCITIES
THERMAL CONDUCTION
THERMO-ELECTRIC MODULES
FRICTION
URI: http://elar.urfu.ru/handle/10995/75454
Условия доступа: info:eu-repo/semantics/openAccess
Конференция/семинар: 3rd Internatiomal Conference on Rheology and Modeling of Materials, IC-RMM 2017
Дата конференции/семинара: 2 October 2017 through 6 October 2017
Идентификатор SCOPUS: 85051360563
Идентификатор WOS: 000546365800002
Идентификатор PURE: 7765288
ISSN: 1742-6588
DOI: 10.1088/1742-6596/1045/1/012002
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1088-1742-6596-1045-1-012002.pdf2,1 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.