Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/75120
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Kartak, V. M. | en |
dc.contributor.author | Ripatti, A. V. | en |
dc.contributor.author | Scheithauer, G. | en |
dc.contributor.author | Kurz, S. | en |
dc.date.accessioned | 2019-07-22T06:43:59Z | - |
dc.date.available | 2019-07-22T06:43:59Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | Minimal proper non-IRUP instances of the one-dimensional cutting stock problem / V. M. Kartak, A. V. Ripatti, G. Scheithauer et al. // Discrete Applied Mathematics. — 2015. — Vol. 187. — P. 120-129. | en |
dc.identifier.issn | 0166-218X | - |
dc.identifier.other | http://arxiv.org/pdf/1405.5988 | |
dc.identifier.other | 1 | good_DOI |
dc.identifier.other | f3b0ac6f-9126-4ff2-884a-427d32025983 | pure_uuid |
dc.identifier.other | http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=84928215485 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/75120 | - |
dc.description.abstract | We consider the well-known one dimensional cutting stock problem (1CSP). Based on the pattern structure of the classical ILP formulation of Gilmore and Gomory, we can decompose the infinite set of 1CSP instances, with a fixed number n of demanded pieces, into a finite number of equivalence classes. We show up a strong relation to weighted simple games. Studying the integer round-up property (IRUP) we use the proper LP relaxation of the Gilmore and Gomory model that allows us to consider the 1CSP as the bin packing problem (BPP). We computationally show that all 1CSP instances with n≤&9 have the proper IRUP, while we give examples of proper non-IRUP instances with n=10 and proper gap 1. Proper gaps larger than 1 occur for n≥11. The largest known proper gap is raised from 1.003 to 1.0625. The used algorithmic approaches are based on exhaustive enumeration and integer linear programming. Additionally we give some theoretical bounds showing that all 1CSP instances with some specific parameters have the proper IRUP. ;copy; 2015 Elsevier B.V. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Discrete Applied Mathematics | en |
dc.subject | BIN PACKING PROBLEM | en |
dc.subject | CUTTING STOCK PROBLEM | en |
dc.subject | EQUIVALENCE OF INSTANCES | en |
dc.subject | INTEGER ROUND-UP PROPERTY | en |
dc.subject | WEIGHTED SIMPLE GAMES | en |
dc.subject | BINS | en |
dc.subject | BOOLEAN FUNCTIONS | en |
dc.subject | EQUIVALENCE CLASSES | en |
dc.subject | BIN PACKING PROBLEM | en |
dc.subject | CUTTING STOCK PROBLEM | en |
dc.subject | EQUIVALENCE OF INSTANCES | en |
dc.subject | INTEGER ROUND-UP PROPERTY | en |
dc.subject | SIMPLE GAMES | en |
dc.subject | INTEGER PROGRAMMING | en |
dc.title | Minimal proper non-IRUP instances of the one-dimensional cutting stock problem | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1016/j.dam.2015.02.020 | - |
dc.identifier.scopus | 84928215485 | - |
local.affiliation | Bashkir State Pedagogical University Named after M. Akmullah, Oktyabrskoy Revolutsii St. 3a, Ufa, 450000, Russian Federation | en |
local.affiliation | Ural Federal University Named after the First President of Russia B.N. Yeltsin, Mira st. 19, Ekaterinburg, 620002, Russian Federation | en |
local.affiliation | Technische Universität Dresden, Mommsenstrasse 9, Dresden, 01069, Germany | en |
local.affiliation | Universität Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany | en |
local.description.firstpage | 120 | - |
local.description.lastpage | 129 | - |
local.volume | 187 | - |
dc.identifier.wos | 000353846000013 | - |
local.identifier.pure | 553958 | - |
local.identifier.eid | 2-s2.0-84928215485 | - |
local.identifier.wos | WOS:000353846000013 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.1016-j.dam.2015.02.020.pdf | 405,27 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.