Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/75120
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKartak, V. M.en
dc.contributor.authorRipatti, A. V.en
dc.contributor.authorScheithauer, G.en
dc.contributor.authorKurz, S.en
dc.date.accessioned2019-07-22T06:43:59Z-
dc.date.available2019-07-22T06:43:59Z-
dc.date.issued2015-
dc.identifier.citationMinimal proper non-IRUP instances of the one-dimensional cutting stock problem / V. M. Kartak, A. V. Ripatti, G. Scheithauer et al. // Discrete Applied Mathematics. — 2015. — Vol. 187. — P. 120-129.en
dc.identifier.issn0166-218X-
dc.identifier.otherhttp://arxiv.org/pdf/1405.5988pdf
dc.identifier.other1good_DOI
dc.identifier.otherf3b0ac6f-9126-4ff2-884a-427d32025983pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=84928215485m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/75120-
dc.description.abstractWe consider the well-known one dimensional cutting stock problem (1CSP). Based on the pattern structure of the classical ILP formulation of Gilmore and Gomory, we can decompose the infinite set of 1CSP instances, with a fixed number n of demanded pieces, into a finite number of equivalence classes. We show up a strong relation to weighted simple games. Studying the integer round-up property (IRUP) we use the proper LP relaxation of the Gilmore and Gomory model that allows us to consider the 1CSP as the bin packing problem (BPP). We computationally show that all 1CSP instances with n≤&9 have the proper IRUP, while we give examples of proper non-IRUP instances with n=10 and proper gap 1. Proper gaps larger than 1 occur for n≥11. The largest known proper gap is raised from 1.003 to 1.0625. The used algorithmic approaches are based on exhaustive enumeration and integer linear programming. Additionally we give some theoretical bounds showing that all 1CSP instances with some specific parameters have the proper IRUP. ;copy; 2015 Elsevier B.V.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevieren
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceDiscrete Applied Mathematicsen
dc.subjectBIN PACKING PROBLEMen
dc.subjectCUTTING STOCK PROBLEMen
dc.subjectEQUIVALENCE OF INSTANCESen
dc.subjectINTEGER ROUND-UP PROPERTYen
dc.subjectWEIGHTED SIMPLE GAMESen
dc.subjectBINSen
dc.subjectBOOLEAN FUNCTIONSen
dc.subjectEQUIVALENCE CLASSESen
dc.subjectBIN PACKING PROBLEMen
dc.subjectCUTTING STOCK PROBLEMen
dc.subjectEQUIVALENCE OF INSTANCESen
dc.subjectINTEGER ROUND-UP PROPERTYen
dc.subjectSIMPLE GAMESen
dc.subjectINTEGER PROGRAMMINGen
dc.titleMinimal proper non-IRUP instances of the one-dimensional cutting stock problemen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.dam.2015.02.020-
dc.identifier.scopus84928215485-
local.affiliationBashkir State Pedagogical University Named after M. Akmullah, Oktyabrskoy Revolutsii St. 3a, Ufa, 450000, Russian Federationen
local.affiliationUral Federal University Named after the First President of Russia B.N. Yeltsin, Mira st. 19, Ekaterinburg, 620002, Russian Federationen
local.affiliationTechnische Universität Dresden, Mommsenstrasse 9, Dresden, 01069, Germanyen
local.affiliationUniversität Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germanyen
local.description.firstpage120-
local.description.lastpage129-
local.volume187-
dc.identifier.wos000353846000013-
local.identifier.pure553958-
local.identifier.eid2-s2.0-84928215485-
local.identifier.wosWOS:000353846000013-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1016-j.dam.2015.02.020.pdf405,27 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.