Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/75091
Title: Spectral and atmospheric characterization of 51 Eridani b using VLT/SPHERE
Authors: Samland, M.
Mollière, P.
Bonnefoy, M.
Maire, A. -L.
Cantalloube, F.
Cheetham, A. C.
Mesa, D.
Gratton, R.
Biller, B. A.
Wahhaj, Z.
Bouwman, J.
Brandner, W.
Melnick, D.
Carson, J.
Janson, M.
Henning, T.
Homeier, D.
Mordasini, C.
Langlois, M.
Quanz, S. P.
Van, Boekel, R.
Zurlo, A.
Schlieder, J. E.
Avenhaus, H.
Beuzit, J. -L.
Boccaletti, A.
Bonavita, M.
Chauvin, G.
Claudi, R.
Cudel, M.
Desidera, S.
Feldt, M.
Fusco, T.
Galicher, R.
Kopytova, T. G.
Lagrange, A. -M.
Le, Coroller, H.
Martinez, P.
Moeller-Nilsson, O.
Mouillet, D.
Mugnier, L. M.
Perrot, C.
Sevin, A.
Sissa, E.
Vigan, A.
Weber, L.
Issue Date: 2017
Publisher: EDP Sciences
Citation: Spectral and atmospheric characterization of 51 Eridani b using VLT/SPHERE / M. Samland, P. Mollière, M. Bonnefoy et al. // Astronomy and Astrophysics. — 2017. — Vol. 603. — A57.
Abstract: Context. 51 Eridani b is an exoplanet around a young (20 Myr) nearby (29.4 pc) F0-type star, which was recently discovered by direct imaging. It is one of the closest direct imaging planets in angular and physical separation (∼0.5″, ∼13 au) and is well suited for spectroscopic analysis using integral field spectrographs. Aims. We aim to refine the atmospheric properties of the known giant planet and to constrain the architecture of the system further by searching for additional companions. Methods. We used the extreme adaptive optics instrument SPHERE at the Very Large Telescope (VLT) to obtain simultaneous dual-band imaging with IRDIS and integral field spectra with IFS, extending the spectral coverage of the planet to the complete Y- to H-band range and providing additional photometry in the K12-bands (2.11, 2.25 μm). The object is compared to other known cool and peculiar dwarfs. The posterior probability distributions for parameters of cloudy and clear atmospheric models are explored using MCMC. We verified our methods by determining atmospheric parameters for the two benchmark brown dwarfs Gl 570D and HD 3651B. We used archival VLT-NACO (L′) Sparse Aperture Masking data to probe the innermost region for additional companions. Results. We present the first spectrophotometric measurements in the Y and K bands for the planet and revise its J-band flux to values 40% fainter than previous measurements. Cloudy models with uniform cloud coverage provide a good match to the data. We derive the temperature, radius, surface gravity, metallicity, and cloud sedimentation parameter f sed . We find that the atmosphere is highly super-solar ([Fe/H] = 1.0 ± 0.1 dex), and the low f sed = 1.26 +0.36 -0.29 value is indicative of a vertically extended, optically thick cloud cover with small sized particles. The model radius and surface gravity estimates suggest higher planetary masses of M gravity = 9.1 +4.9 -3.3 M J . The evolutionary model only provides a lower mass limit of > 2 M J (for pure hot-start). The cold-start model cannot explain the luminosity of the planet. The SPHERE and NACO/SAM detection limits probe the 51 Eri system at solar system scales and exclude brown-dwarf companions more massive than 20 M J beyond separations of ∼2.5 au and giant planets more massive than 2 M J beyond 9 au. © ESO, 2017.
Keywords: METHODS: DATA ANALYSIS
PLANETS AND SATELLITES: ATMOSPHERES
STARS: INDIVIDUAL: 51 ERIDANI
TECHNIQUES: HIGH ANGULAR RESOLUTION
TECHNIQUES: IMAGE PROCESSING
ADAPTIVE OPTICS
GRAVITATION
OPTICAL DATA PROCESSING
PLANETS
PROBABILITY DISTRIBUTIONS
SATELLITES
SPECTROSCOPIC ANALYSIS
STARS
METHODS:DATA ANALYSIS
PLANETS AND SATELLITES: ATMOSPHERES
STARS: INDIVIDUAL
TECHNIQUES: HIGH ANGULAR RESOLUTIONS
TECHNIQUES: IMAGE PROCESSING
IMAGE PROCESSING
URI: http://elar.urfu.ru/handle/10995/75091
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85022177182
WOS ID: 000406619100042
PURE ID: 1975767
ISSN: 0004-6361
DOI: 10.1051/0004-6361/201629767
metadata.dc.description.sponsorship: We acknowledge financial support from the Programme National de Plan?tologie (PNP) and the Programme National de Physique Stellaire (PNPS) of CNRS-INSU. This work has also been supported by a grant from the French Labex OSUG@2020 (Investissements d'avenir - ANR10 LABX56). The project is supported by CNRS, by the Agence Nationale de la Recherche (ANR-14-CE33-0018). This work has made use of the SPHERE Data Centre, jointly operated by OSUG/IPAG (Grenoble), PYTHEAS/LAM/CeSAM (Marseille), OCA/Lagrange (Nice) and Observatoire de Paris/LESIA (Paris). H.A. acknowledges support from the Millennium Science Initiative (Chilean Ministry of Economy) through grant RC130007 and from FONDECYT grant 3150643. C.M. acknowledges the support of the Swiss National Science Foundation via grant BSSGI0-155816 "PlanetsInTime". J. Carson and D. Melnick were supported by the South Carolina Space Grant Consortium. We thank P. Delorme and E. Lagadec (SPHERE Data Centre) for their efficient help during the data reduction process. SPHERE is an instrument designed and built by a consortium consisting of IPAG (Grenoble, France), MPIA (Heidelberg, Germany), LAM (Marseille, France), LESIA (Paris, France), Laboratoire Lagrange (Nice, France), INAF-Osservatorio di Padova (Italy), Observatoire astronomique de l'Universit? de Gen?ve (Switzerland), ETH Zurich (Switzerland), NOVA (The Netherlands), ONERA (France) and ASTRON (The Netherlands) in collaboration with ESO. SPHERE was funded by ESO, with additional contributions from CNRS (France), MPIA (Germany), INAF (Italy), FINES (Switzerland) and NOVA (The Netherlands). SPHERE also received funding from the European Commission Sixth and Seventh Framework Programmes as part of the Optical Infrared Coordination Network for Astronomy (OPTICON) under grant number RII3-Ct-2004-001566 for FP6 (2004-2008), grant number 226604 for FP7 (2009-2012) and grant number 312430 for FP7 (2013-2016).
CORDIS project card: 226604
312430
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1051-0004-6361-201629767.pdf12,1 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.