Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/75021
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorSubbotina, I. E.en
dc.contributor.authorBuevich, A. G.en
dc.contributor.authorShichkin, A. V.en
dc.contributor.authorSergeev, A. P.en
dc.contributor.authorTarasov, D. A.en
dc.contributor.authorTyagunov, A. G.en
dc.contributor.authorSergeeva, M. V.en
dc.contributor.authorBaglaeva, E. M.en
dc.date.accessioned2019-07-22T06:43:39Z-
dc.date.available2019-07-22T06:43:39Z-
dc.date.issued2018-
dc.identifier.citationMultilayer perceptron, generalized regression neural network, and hybrid model in predicting the spatial distribution of impurity in the topsoil of urbanized area / I. E. Subbotina, A. G. Buevich, A. V. Shichkin et al. // AIP Conference Proceedings. — 2018. — Vol. 1982. — 20004.en
dc.identifier.issn0094-243X-
dc.identifier.otherhttps://aip.scitation.org/doi/pdf/10.1063/1.5045410pdf
dc.identifier.other1good_DOI
dc.identifier.other092b948b-199f-45f9-b1ba-854d437fc9efpure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85051103540m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/75021-
dc.description.abstractThe study is based on the data obtained as a result of soil screening in the city of Noyabrsk, Russia. A comparison of two types of neural networks most commonly used in this type of research was carried out: multi-layer perceptron (MLP), generalized regression neural network (GRNN), and a combined MLP and ordinary kriging approach (MLPRK) for predicting the spatial distribution of the chemical element Chromium (Cr) in the surface layer of the urbanized territory. The model structures were developed using computer modeling, based on minimizing of a root mean squared error (RMSE). As input parameters, the spatial coordinates were used, and the concentration of Cr - as the output. The hybrid MLPRK approach showed the best prognostic accuracy. © 2018 Author(s).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Institute of Physics Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAIP Conference Proceedingsen
dc.titleMultilayer perceptron, generalized regression neural network, and hybrid model in predicting the spatial distribution of impurity in the topsoil of urbanized areaen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.conference.name2nd International Conference on Mathematical Methods and Computational Techniques in Science and Engineeringen
dc.conference.date16 February 2018 through 18 February 2018-
dc.identifier.rsi35724623-
dc.identifier.doi10.1063/1.5045410-
dc.identifier.scopus85051103540-
local.affiliationUral Federal University, Mira str., 19, Ekaterinburg, 620002, Russian Federationen
local.affiliationInstitute of Industrial Ecology UB RAS, S. Kovalevskoy str., 20, Ekaterinburg, 620990, Russian Federationen
local.contributor.employeeБуевич Александр Геннадьевичru
local.contributor.employeeШичкин Андрей Васильевичru
local.contributor.employeeСергеев Александр Петровичru
local.contributor.employeeТарасов Дмитрий Александровичru
local.contributor.employeeТягунов Андрей Геннадьевичru
local.contributor.employeeБаглаева Елена Михайловнаru
local.volume1982-
dc.identifier.wos000447848800004-
local.identifier.pure7763451-
local.description.order20004-
local.identifier.eid2-s2.0-85051103540-
local.identifier.wosWOS:000447848800004-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1063-1.5045410.pdf1,48 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.