Please use this identifier to cite or link to this item:
https://elar.urfu.ru/handle/10995/74997
Title: | Об одном аналоге метода Стеффенсена для решения нелинейных операторных уравнений |
Other Titles: | One specification of Steffensen's method for solving nonlinear operator equations |
Authors: | Yumanova, I. F. Юманова, И. Ф. |
Issue Date: | 2016 |
Publisher: | Udmurt State University Удмуртский государственный университет |
Citation: | Юманова И. Ф. Об одном аналоге метода Стеффенсена для решения нелинейных операторных уравнений / И. Ф. Юманова // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. — 2016. — Т. 26. — №. 4. — С. 579-590. |
Abstract: | We consider an analogue of Steffensen's method for solving nonlinear operator equations. The proposed method is a two-step iterative process. We study the convergence of the proposed method, prove the uniqueness of the solution and find the order of convergence. The proposed method uses no derivative operators. The convergence order is greater than that in Newton's method and some generalizations of the method of chords and Aitken-Steffensen's method. The method is applied to some test systems of nonlinear equations and the problem of curves intersection which are defined implicitly as solutions of differential equations. Numerical results are compared with the results obtained by Newton's method, the modified Newton method, and modifications of Wegstein's and Aitken's methods which were proposed by the author in previous works. |
Keywords: | NEWTON'S METHOD NONLINEAR OPERATOR EQUATION PROBLEM OF THE INTERSECTION CURVES STEFFENSEN'S METHOD |
URI: | http://elar.urfu.ru/handle/10995/74997 |
Access: | info:eu-repo/semantics/openAccess |
RSCI ID: | 27673742 |
SCOPUS ID: | 85009742822 |
PURE ID: | 1463829 |
ISSN: | 1994-9197 |
DOI: | 10.20537/vm160411 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85009742822.pdf | 216,74 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.