Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/57061
Title: | Solar walls for high-performance buildings |
Authors: | Stankov, B. N. Kaloyanov, N. G. Tomov, G. D. |
Issue Date: | 2017 |
Publisher: | Ural Federal University WIT Press Уральский федеральный университет |
Citation: | Stankov B. N. Solar walls for high-performance buildings / B. N. Stankov, N. G. Kaloyanov, G. D. Tomov // International Journal of Energy Production and Management. — 2017. — Vol. 2. Iss. 4. — P. 339-351. |
Abstract: | Passive solar design can reduce building energy demand for heating, cooling and ventilation, while also contributing to the comfort, well-being and productivity of the building’s occupants. The successful application of passive solar features, such as solar walls, requires a good understanding of the factors influencing their energy performance and a correct assessment of this performance during the design process. This paper discusses some basic design strategies for successful application of solar walls and the factors with the most significant impact on their efficiency. It summarizes the principle results and findings of an experimental study, based on dynamic simulations and test site measurements. The energy performance of various configurations of unvented solar walls was investigated in different climatic conditions. The outcomes of the dynamic simulations were used to develop a simplified quasisteady-state model, which can be used for approximate evaluation of the heat gains and heat losses through an unvented solar wall on a monthly basis. The model is compatible with the monthly method of EN ISO 13790. |
Keywords: | EN ISO 13790 ENERGY PERFORMANCE EXPERIMENTAL GREEN BUILDINGS HEAT TRANSFER MODELLING PASSIVE SOLAR TRNSYS TROMBE WALL |
URI: | http://elar.urfu.ru/handle/10995/57061 |
RSCI ID: | https://elibrary.ru/item.asp?id=32560496 |
ISSN: | 2056-3272 (paper format) 2056-3280 (online) |
DOI: | 10.2495/EQ-V2-N4-339-351 |
Sponsorship: | This work has been supported by The National Science Fund of Bulgaria under projects number ДУНК-01/3 (DUNK-01/3) and ДФНИ Е 02/17 (DFNI E 02/17). |
Origin: | International Journal of Energy Production and Management. 2017. Vol. 2. Iss. 4 |
Appears in Collections: | International Journal of Energy Production and Management |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ijepm_2017_v2_4_04.pdf | 3,07 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.