Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/51523
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Zhagorina, Ksenia | en |
dc.contributor.author | Buslavyev, Alexey | en |
dc.date.accessioned | 2024-03-21T08:51:17Z | - |
dc.date.available | 2024-03-21T08:51:17Z | - |
dc.date.issued | 2012 | - |
dc.identifier.citation | Zhagorina K. Computer analysis of visual image similarity / Ksenia Zhagorina, Alexey Buslavyev // CEUR Workshop Proceedings. — 2012. — Vol. 1178. | en |
dc.identifier.issn | 1613-0073 | - |
dc.identifier.other | 43789 | id |
dc.identifier.other | http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=84922042129 | m |
dc.identifier.other | 0ec92f80-4d4b-4656-b521-b37c7ebcd02e | pure_uuid |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/51523 | - |
dc.description.abstract | This paper is a description of image analysis and machine-learning algorithms used for multiclass image classification in the process of our partici-pation in the ImageCLEF 2012 competition. Our goal was to develop an appli-cation that could successfully determine the location of a mobile robot using the visual information provided by a camera placed on the robot. The resulting ap-plication uses machine-learning methods that improved on self-organizing Ko-honen maps and classification algorithms based on probabilistic models. The result of our work was an application that was able to correctly classify 86 per-cent of input images presented in the ImageCLEF Robot Vision task. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Pleiades Publishing Ltd | en |
dc.source | CEUR Workshop Proceedings | en |
dc.subject | CLASSIFICA-TION PROBLEM | en |
dc.subject | COMPUTER VISION | en |
dc.subject | IMAGE ANALYSIS | en |
dc.subject | IMAGE SEARCH | en |
dc.subject | KOHONEN NETWORK | en |
dc.subject | MAXIMUM LIKELIHOOD METHOD | en |
dc.subject | MULTICLASS CLASSIFICATION | en |
dc.subject | PROBABILISTIC MODEL | en |
dc.subject | VISUAL SIMILARITY ANALYSIS | en |
dc.subject | ALGORITHMS | en |
dc.subject | ARTIFICIAL INTELLIGENCE | en |
dc.subject | CLASSIFICATION (OF INFORMATION) | en |
dc.subject | COMPUTER VISION | en |
dc.subject | IMAGE ANALYSIS | en |
dc.subject | LEARNING ALGORITHMS | en |
dc.subject | LEARNING SYSTEMS | en |
dc.subject | MAXIMUM LIKELIHOOD | en |
dc.subject | MAXIMUM LIKELIHOOD ESTIMATION | en |
dc.subject | ROBOTS | en |
dc.subject | SELF ORGANIZING MAPS | en |
dc.subject | CLASSIFICA-TION PROBLEM | en |
dc.subject | IMAGE SEARCH | en |
dc.subject | KOHONEN NETWORK | en |
dc.subject | MAXIMUM LIKELIHOOD METHODS | en |
dc.subject | MULTI-CLASS CLASSIFICATION | en |
dc.subject | PROBABILISTIC MODELING | en |
dc.subject | VISUAL SIMILARITY | en |
dc.subject | IMAGE CLASSIFICATION | en |
dc.title | Computer analysis of visual image similarity | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.type | info:eu-repo/semantics/article | en |
dc.identifier.scopus | 84922042129 | - |
local.affiliation | Ural Federal University, Institute of Mathematics and Computer Sciences, Yekaterinburg, Russian Federation | en |
local.contributor.employee | Буславьев Алексей Владимирович | ru |
local.volume | 1178 | - |
local.contributor.department | Институт естественных наук и математики | ru |
local.identifier.pure | 1131986 | - |
local.identifier.eid | 2-s2.0-84922042129 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-84922042129.pdf | 344,33 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.