Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/51151
Title: The Poisson problem in a domain with a cut
Authors: Subbotin, Yu. N.
Chernykh, N. I.
Issue Date: 2012
Citation: Subbotin Yu. N. The Poisson problem in a domain with a cut / Yu. N. Subbotin, N. I. Chernykh // Siberian Advances in Mathematics. — 2012. — Vol. 22. — № 3. — P. 204-216.
Abstract: With the help of harmonic wavelets, we study the behavior of solutions to the Poisson problem in an elliptic ring when the interior bound shrinks to a segment. It is demonstrated that only partial derivatives of a solution have unbounded singularities near the ends of this segment. © 2012 Allerton Press, Inc.
Keywords: ELLIPTIC RING
HARMONIC WAVELETS
LAPLACE OPERATOR
POISSON BOUNDARY VALUE PROBLEM
URI: http://hdl.handle.net/10995/51151
https://elar.urfu.ru/handle/10995/51151
Access: info:eu-repo/semantics/restrictedAccess
RSCI ID: 20473025
SCOPUS ID: 84865610945
PURE ID: 1079038
ISSN: 1055-1344
DOI: 10.3103/S1055134412030042
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.3103S1055134412030042_2012.pdf556,59 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.