Please use this identifier to cite or link to this item: https://elar.urfu.ru/handle/10995/51016
Title: Form preservation under approximation by local exponential splines of an arbitrary order
Authors: Strelkova, E. V.
Shevaldin, V. T.
Issue Date: 2012
Citation: Strelkova E. V. Form preservation under approximation by local exponential splines of an arbitrary order / E. V. Strelkova, V. T. Shevaldin // Proceedings of the Steklov Institute of Mathematics. — 2012. — Vol. 277. — № SUPPL. 1. — P. 171-179.
Abstract: We continue the study of the properties of local L-splines with uniform knots (such splines were constructed in the authors' earlier papers) corresponding to a linear differential operator L of order r with constant coefficients and real pairwise different roots of the characteristic polynomial. Sufficient conditions (which are also necessary) are established under which an L-spline locally inherits the property of the generalized k-monotonicity (k ≤ r - 1) of the input data, which are the values of the approximated function at the nodes of a uniform grid shifted with respect to the grid of knots of the L-spline. The parameters of an L-spline that is exact on the kernel of the operator L are written explicitly. © 2012 Pleiades Publishing, Ltd.
Keywords: FORM PRESERVATION
K-MONOTONICITY
LOCAL L-SPLINE
URI: http://elar.urfu.ru/handle/10995/51016
Access: info:eu-repo/semantics/restrictedAccess
RSCI ID: 20475744
SCOPUS ID: 84863605185
WOS ID: 000305909000017
PURE ID: 1080581
ISSN: 0081-5438
DOI: 10.1134/S0081543812050173
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1134S0081543812050173_2012.pdf418,57 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.