Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/50982
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Efimov, A. V. | en |
dc.date.accessioned | 2017-09-04T14:45:03Z | - |
dc.date.available | 2017-09-04T14:45:03Z | - |
dc.date.issued | 2012 | - |
dc.identifier.citation | Efimov A. V. A version of Turán's problem for positive definite functions of several variables / A. V. Efimov // Proceedings of the Steklov Institute of Mathematics. — 2012. — Vol. 277. — № SUPPL. 1. — P. 93-112. | en |
dc.identifier.issn | 0081-5438 | - |
dc.identifier.other | 1 | good_DOI |
dc.identifier.other | 4d061070-1819-48a3-8822-86a93946e2a2 | pure_uuid |
dc.identifier.other | http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=84863585374 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/50982 | - |
dc.description.abstract | Let G m(B) be the class of functions of m variables with support in the unit ball B centered at the origin of the space ℝ m, continuous in ℝ m, normed by the condition f(0) = 1, and having a nonnegative Fourier transform. In this paper, we study the problem of finding the maximum value Φ m(a) of normed integrals of functions from the class G m(B) over the sphere S a of radius a, 0 < a < 1, centered at the origin. It is proved that, in this problem, we may restrict our attention to spherically symmetric functions from G m(B). The existence of an extremal function is proved and a representation of this function as the self-convolution of a radial function is obtained. An integral equation is written for a solution of the problem for any m ≥ 3. The values Φ 3(a) are calculated for 1/3 ≤ a < 1. © 2012 Pleiades Publishing, Ltd. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.rights | info:eu-repo/semantics/restrictedAccess | en |
dc.source | Proceedings of the Steklov Institute of Mathematics | en |
dc.subject | MULTIDIMENSIONAL FUNCTIONS | en |
dc.subject | POSITIVE DEFINITE FUNCTIONS | en |
dc.subject | TURÁN'S PROBLEM | en |
dc.title | A version of Turán's problem for positive definite functions of several variables | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.type | info:eu-repo/semantics/article | en |
dc.identifier.rsi | 20475620 | - |
dc.identifier.doi | 10.1134/S0081543812050100 | - |
dc.identifier.scopus | 84863585374 | - |
local.contributor.employee | Ефимов Андрей Владимирович | ru |
local.description.firstpage | 93 | - |
local.description.lastpage | 112 | - |
local.issue | SUPPL. 1 | - |
local.volume | 277 | - |
dc.identifier.wos | 000305909000010 | - |
local.contributor.department | Институт естественных наук и математики | ru |
local.identifier.pure | 1079100 | - |
local.identifier.eid | 2-s2.0-84863585374 | - |
local.identifier.wos | WOS:000305909000010 | - |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10.1134S0081543812050100_2012.pdf | 579,64 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.