Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/27362
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKorotkii, A. I.en
dc.contributor.authorMikhailova, D. O.en
dc.date.accessioned2014-11-29T19:47:02Z-
dc.date.available2014-11-29T19:47:02Z-
dc.date.issued2013-
dc.identifier.citationKorotkii A. I. Reconstruction of boundary controls in parabolic systems / A. I. Korotkii, D. O. Mikhailova // Proceedings of the Steklov Institute of Mathematics. — 2013. — Vol. 280. — № 1. — P. 98-118.en
dc.identifier.issn0081-5438-
dc.identifier.other1good_DOI
dc.identifier.other25a23b4d-aff1-4b03-bc0a-2ac3b6b5f2aepure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=84876007094m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/27362-
dc.description.abstractIn the paper, an inverse dynamic problem is considered. It consists in reconstructing a priori unknown boundary controls in dynamical systems described by boundary value problems for partial differential equations of parabolic type. The source information for solving the inverse problem is the results of approximate measurements of the states of the observed system's motion. The problem is solved in the static case; i. e., to solve it, we use all the measurement data accumulated during some specified observation interval. The problem under consideration is ill-posed. To solve it, we propose the Tikhonov method with a stabilizer containing the sum of the mean-square norm and total time variation of the control. The use of such nondifferentiable stabilizer allows us to obtain more precise results than the approximation of the desired control in the Lebesgue spaces. In particular, this method provides the pointwise and piecewise uniform convergences of regularized approximations and makes possible the numerical reconstruction of the subtle structure of the desired control. In the paper, the subgradient projection method for obtaining a minimizing sequence for the Tikhonov functional is described and substantiated. Also, we demonstrate the two-stage finitedimensional approximation of the problem and present the results of numerical simulation. © 2013 Pleiades Publishing, Ltd.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.sourceProceedings of the Steklov Institute of Mathematicsen
dc.subjectCONTROLen
dc.subjectDYNAMICAL SYSTEMen
dc.subjectINVERSE PROBLEMen
dc.subjectMEASUREMENTen
dc.subjectOBSERVATIONen
dc.subjectPIECEWISE UNIFORM CONVERGENCEen
dc.subjectRECONSTRUCTIONen
dc.subjectREGULARIZATIONen
dc.subjectTHE TIKHONOV METHODen
dc.subjectVARIATIONen
dc.titleReconstruction of boundary controls in parabolic systemsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.typeinfo:eu-repo/semantics/articleen
dc.identifier.rsi20431007-
dc.identifier.doi10.1134/S0081543813020090-
dc.identifier.scopus84876007094-
local.affiliationInstitute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620990, Russian Federationen
local.affiliationInstitute of Mathematics and Computer Science, Ural Federal University, ul. Mira, 19, Yekaterinburg, 620000, Russian Federationen
local.contributor.employeeКороткий Александр Илларионовичru
local.description.firstpage98-
local.description.lastpage118-
local.issue1-
local.volume280-
dc.identifier.wos000317236500009-
local.contributor.departmentИнститут естественных наук и математикиru
local.identifier.pure922330-
local.identifier.eid2-s2.0-84876007094-
local.identifier.wosWOS:000317236500009-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
scopus-2013-0519.pdf557,07 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.