Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141739
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorTitova, E. A.en
dc.contributor.authorAlexandrov, D. V.en
dc.date.accessioned2025-02-25T11:02:25Z-
dc.date.available2025-02-25T11:02:25Z-
dc.date.issued2024-
dc.identifier.citationTitova, E., & Alexandrov, D. (2024). The Solid–Liquid Phase Interface Dynamics in an Undercooled Melt with a Solid Wall. Mathematics, 12(2), [327]. https://doi.org/10.3390/math12020327apa_pure
dc.identifier.issn2227-7390-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85183203196&doi=10.3390%2fmath12020327&partnerID=40&md5=46e128f0800097a19a8971caa3db656c1
dc.identifier.otherhttps://www.mdpi.com/2227-7390/12/2/327/pdf?version=1705653924pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/141739-
dc.description.abstractA new boundary integral equation for the interface function of a curved solid/liquid phase interface propagating into an undercooled one-component melt is derived in the presence of a solid wall in liquid. Green’s function technique is used to transform a purely thermal boundary value problem to a single integro-differential equation for the interface function in two- and three-dimensional cases. It is shown that a solid wall represents an additional source of heat and melt undercooling can be negative in the vicinity of the wall. The new boundary integral equation has a limiting transition to previously developed theory in the absence of a solid wall. © 2024 by the authors.en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnauka, (FEUZ-2023-0022); Ministry of Education and Science of the Russian Federation, Minobrnaukaen
dc.description.sponsorshipThis work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (project no. FEUZ-2023-0022).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.sourceMathematics2
dc.sourceMathematicsen
dc.subjectBOUNDARY INTEGRAL EQUATIONen
dc.subjectDENDRITESen
dc.subjectGREEN’S FUNCTION TECHNIQUEen
dc.subjectPHASE TRANSITIONSen
dc.subjectPROPAGATION OF CURVED SOLID–LIQUID INTERFACESen
dc.subjectUNDERCOOLED MELTSen
dc.titleThe Solid–Liquid Phase Interface Dynamics in an Undercooled Melt with a Solid Wallen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/math12020327-
dc.identifier.scopus85183203196-
local.contributor.employeeTitova E.A., Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeAlexandrov D.V., Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.issue2-
local.volume12-
dc.identifier.wos001150871500001-
local.contributor.departmentLaboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federationen
local.identifier.pure52301568-
local.description.order327
local.identifier.eid2-s2.0-85183203196-
local.fund.rsfMinistry of Education and Science of the Russian Federation, Minobrnauka, (FEUZ-2023-0022); Ministry of Education and Science of the Russian Federation, Minobrnauka
local.fund.rsfThis work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (project no. FEUZ-2023-0022).
local.identifier.wosWOS:001150871500001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85183203196.pdf995,47 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.