Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/141739
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Titova, E. A. | en |
dc.contributor.author | Alexandrov, D. V. | en |
dc.date.accessioned | 2025-02-25T11:02:25Z | - |
dc.date.available | 2025-02-25T11:02:25Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Titova, E., & Alexandrov, D. (2024). The Solid–Liquid Phase Interface Dynamics in an Undercooled Melt with a Solid Wall. Mathematics, 12(2), [327]. https://doi.org/10.3390/math12020327 | apa_pure |
dc.identifier.issn | 2227-7390 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access; Gold Open Access | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85183203196&doi=10.3390%2fmath12020327&partnerID=40&md5=46e128f0800097a19a8971caa3db656c | 1 |
dc.identifier.other | https://www.mdpi.com/2227-7390/12/2/327/pdf?version=1705653924 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/141739 | - |
dc.description.abstract | A new boundary integral equation for the interface function of a curved solid/liquid phase interface propagating into an undercooled one-component melt is derived in the presence of a solid wall in liquid. Green’s function technique is used to transform a purely thermal boundary value problem to a single integro-differential equation for the interface function in two- and three-dimensional cases. It is shown that a solid wall represents an additional source of heat and melt undercooling can be negative in the vicinity of the wall. The new boundary integral equation has a limiting transition to previously developed theory in the absence of a solid wall. © 2024 by the authors. | en |
dc.description.sponsorship | Ministry of Education and Science of the Russian Federation, Minobrnauka, (FEUZ-2023-0022); Ministry of Education and Science of the Russian Federation, Minobrnauka | en |
dc.description.sponsorship | This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (project no. FEUZ-2023-0022). | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.rights | cc-by | other |
dc.source | Mathematics | 2 |
dc.source | Mathematics | en |
dc.subject | BOUNDARY INTEGRAL EQUATION | en |
dc.subject | DENDRITES | en |
dc.subject | GREEN’S FUNCTION TECHNIQUE | en |
dc.subject | PHASE TRANSITIONS | en |
dc.subject | PROPAGATION OF CURVED SOLID–LIQUID INTERFACES | en |
dc.subject | UNDERCOOLED MELTS | en |
dc.title | The Solid–Liquid Phase Interface Dynamics in an Undercooled Melt with a Solid Wall | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.3390/math12020327 | - |
dc.identifier.scopus | 85183203196 | - |
local.contributor.employee | Titova E.A., Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federation | en |
local.contributor.employee | Alexandrov D.V., Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federation | en |
local.issue | 2 | - |
local.volume | 12 | - |
dc.identifier.wos | 001150871500001 | - |
local.contributor.department | Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg, 620000, Russian Federation | en |
local.identifier.pure | 52301568 | - |
local.description.order | 327 | |
local.identifier.eid | 2-s2.0-85183203196 | - |
local.fund.rsf | Ministry of Education and Science of the Russian Federation, Minobrnauka, (FEUZ-2023-0022); Ministry of Education and Science of the Russian Federation, Minobrnauka | |
local.fund.rsf | This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (project no. FEUZ-2023-0022). | |
local.identifier.wos | WOS:001150871500001 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85183203196.pdf | 995,47 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.