Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141704
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMatrenin, P. V.en
dc.contributor.authorGamaley, V. V.en
dc.contributor.authorKhalyasmaa, A. I.en
dc.contributor.authorStepanova, A. I.en
dc.date.accessioned2025-02-25T11:02:20Z-
dc.date.available2025-02-25T11:02:20Z-
dc.date.issued2024-
dc.identifier.citationMatrenin, P., Gamaley, V., Khalyasmaa, A., & Stepanova, A. (2024). Solar Irradiance Forecasting with Natural Language Processing of Cloud Observations and Interpretation of Results with Modified Shapley Additive Explanations. Algorithms, 17(4), [150]. https://doi.org/10.3390/a17040150apa_pure
dc.identifier.issn1999-4893-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85191540545&doi=10.3390%2fa17040150&partnerID=40&md5=d8660cc50cd0e2df05bbbb071c1335a11
dc.identifier.otherhttps://www.mdpi.com/1999-4893/17/4/150/pdf?version=1712042323pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/141704-
dc.description.abstractForecasting the generation of solar power plants (SPPs) requires taking into account meteorological parameters that influence the difference between the solar irradiance at the top of the atmosphere calculated with high accuracy and the solar irradiance at the tilted plane of the solar panel on the Earth’s surface. One of the key factors is cloudiness, which can be presented not only as a percentage of the sky area covered by clouds but also many additional parameters, such as the type of clouds, the distribution of clouds across atmospheric layers, and their height. The use of machine learning algorithms to forecast the generation of solar power plants requires retrospective data over a long period and formalising the features; however, retrospective data with detailed information about cloudiness are normally recorded in the natural language format. This paper proposes an algorithm for processing such records to convert them into a binary feature vector. Experiments conducted on data from a real solar power plant showed that this algorithm increases the accuracy of short-term solar irradiance forecasts by 5–15%, depending on the quality metric used. At the same time, adding features makes the model less transparent to the user, which is a significant drawback from the point of view of explainable artificial intelligence. Therefore, the paper uses an additive explanation algorithm based on the Shapley vector to interpret the model’s output. It is shown that this approach allows the machine learning model to explain why it generates a particular forecast, which will provide a greater level of trust in intelligent information systems in the power industry. © 2024 by the authors.en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnauka, (FEUZ-2022-0030); Ministry of Education and Science of the Russian Federation, Minobrnaukaen
dc.description.sponsorshipThe research was carried out within the state assignment with the financial support of the Ministry of Science and Higher Education of the Russian Federation (subject No. FEUZ-2022-0030 Development of an intelligent multi-agent system for modelling deeply integrated technological systems in the power industry).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.sourceAlgorithms2
dc.sourceAlgorithmsen
dc.subjectACCOUNT METEOROLOGICAL PARAMETERSen
dc.subjectDATA PRE-PROCESSINGen
dc.subjectDISTRIBUTED GENERATIONen
dc.subjectEXPLAINABLE ARTIFICIAL INTELLIGENCEen
dc.subjectMACHINE LEARNINGen
dc.subjectPHOTOVOLTAIC POWER PLANTen
dc.subjectSOLAR IRRADIANCE FORECASTINGen
dc.subjectCONCENTRATED SOLAR POWERen
dc.subjectDATA HANDLINGen
dc.subjectDISTRIBUTED POWER GENERATIONen
dc.subjectFORECASTINGen
dc.subjectLEARNING ALGORITHMSen
dc.subjectMACHINE LEARNINGen
dc.subjectNATURAL LANGUAGE PROCESSING SYSTEMSen
dc.subjectRADIOMETERSen
dc.subjectSOLAR PANELSen
dc.subjectSOLAR POWER GENERATIONen
dc.subjectACCOUNT METEOROLOGICAL PARAMETERen
dc.subjectDATA PREPROCESSINGen
dc.subjectEXPLAINABLE ARTIFICIAL INTELLIGENCEen
dc.subjectMACHINE-LEARNINGen
dc.subjectMETEOROLOGICAL PARAMETERSen
dc.subjectNATURAL LANGUAGESen
dc.subjectPHOTOVOLTAIC POWER PLANTen
dc.subjectSHAPLEYen
dc.subjectSOLAR IRRADIANCE FORECASTINGen
dc.subjectSOLAR IRRADIANCESen
dc.subjectSOLAR ENERGYen
dc.titleSolar Irradiance Forecasting with Natural Language Processing of Cloud Observations and Interpretation of Results with Modified Shapley Additive Explanationsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/a17040150-
dc.identifier.scopus85191540545-
local.contributor.employeeMatrenin P.V., Ural Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 19 Mira Str., Yekaterinburg, 620002, Russian Federation, Faculty of Power Engineering, Novosibirsk State Technical University, 20 K. Marx Ave., Novosibirsk, 630073, Russian Federationen
local.contributor.employeeGamaley V.V., Faculty of Power Engineering, Novosibirsk State Technical University, 20 K. Marx Ave., Novosibirsk, 630073, Russian Federationen
local.contributor.employeeKhalyasmaa A.I., Ural Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 19 Mira Str., Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeStepanova A.I., Ural Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 19 Mira Str., Yekaterinburg, 620002, Russian Federationen
local.issue4-
local.volume17-
dc.identifier.wos001210131800001-
local.contributor.departmentUral Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 19 Mira Str., Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentFaculty of Power Engineering, Novosibirsk State Technical University, 20 K. Marx Ave., Novosibirsk, 630073, Russian Federationen
local.identifier.pure56690816-
local.description.order150
local.identifier.eid2-s2.0-85191540545-
local.fund.rsfMinistry of Education and Science of the Russian Federation, Minobrnauka, (FEUZ-2022-0030); Ministry of Education and Science of the Russian Federation, Minobrnauka
local.fund.rsfThe research was carried out within the state assignment with the financial support of the Ministry of Science and Higher Education of the Russian Federation (subject No. FEUZ-2022-0030 Development of an intelligent multi-agent system for modelling deeply integrated technological systems in the power industry).
local.identifier.wosWOS:001210131800001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85191540545.pdf5,28 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.