Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141703
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKhanov, A.en
dc.contributor.authorShulzhenko, A.en
dc.contributor.authorVoroshilova, A.en
dc.contributor.authorZubarev, A.en
dc.contributor.authorKarimov, T.en
dc.contributor.authorFahmi, S.en
dc.date.accessioned2025-02-25T11:02:20Z-
dc.date.available2025-02-25T11:02:20Z-
dc.date.issued2024-
dc.identifier.citationKhanov, A., Shulzhenko, A., Voroshilova, A., Zubarev, A., Karimov, T., & Fahmi, S. (2024). Determining Thresholds for Optimal Adaptive Discrete Cosine Transformation. Algorithms, 17(8), [366]. https://doi.org/10.3390/a17080366apa_pure
dc.identifier.issn1999-4893-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85202343882&doi=10.3390%2fa17080366&partnerID=40&md5=4127aa4e2e19b659dc3c3b89b725f36f1
dc.identifier.otherhttps://www.mdpi.com/1999-4893/17/8/366/pdf?version=1724218966pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/141703-
dc.description.abstractThe discrete cosine transform (DCT) is widely used for image and video compression. Lossy algorithms such as JPEG, WebP, BPG and many others are based on it. Multiple modifications of DCT have been developed to improve its performance. One of them is adaptive DCT (ADCT) designed to deal with heterogeneous image structure and it may be found, for example, in the HEVC video codec. Adaptivity means that the image is divided into an uneven grid of squares: smaller ones retain information about details better, while larger squares are efficient for homogeneous backgrounds. The practical use of adaptive DCT algorithms is complicated by the lack of optimal threshold search algorithms for image partitioning procedures. In this paper, we propose a novel method for optimal threshold search in ADCT using a metric based on tonal distribution. We define two thresholds: pm, the threshold defining solid mean coloring, and ps, defining the quadtree fragment splitting. In our algorithm, the values of these thresholds are calculated via polynomial functions of the tonal distribution of a particular image or fragment. The polynomial coefficients are determined using the dedicated optimization procedure on the dataset containing images from the specific domain, urban road scenes in our case. In the experimental part of the study, we show that ADCT allows a higher compression ratio compared to non-adaptive DCT at the same level of quality loss, up to 66% for acceptable quality. The proposed algorithm may be used directly for image compression, or as a core of video compression framework in traffic-demanding applications, such as urban video surveillance systems. © 2024 by the authors.en
dc.description.sponsorshipRussian Science Foundation, RSF, (20-79-10334)en
dc.description.sponsorshipThis study was supported by the Russian Science Foundation (RSF), project 20-79-10334.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.sourceAlgorithms2
dc.sourceAlgorithmsen
dc.subjectADAPTIVE DISCRETE COSINE TRANSFORMen
dc.subjectADAPTIVITYen
dc.subjectOPTIMIZATIONen
dc.subjectTONAL VARIANCE THRESHOLDSen
dc.subjectTRANSPORT IMAGESen
dc.subjectADAPTIVE ALGORITHMSen
dc.subjectCOMPRESSION RATIO (MACHINERY)en
dc.subjectCOSINE TRANSFORMSen
dc.subjectIMAGE CODINGen
dc.subjectIMAGE COMPRESSIONen
dc.subjectIMAGE ENHANCEMENTen
dc.subjectINTERPOLATIONen
dc.subjectPOLYNOMIAL APPROXIMATIONen
dc.subjectADAPTIVE DISCRETE COSINE TRANSFORMen
dc.subjectADAPTIVITYen
dc.subjectDISCRETE COSINE TRANSFORMATIONen
dc.subjectDISCRETE COSINESen
dc.subjectLOSSY ALGORITHMSen
dc.subjectOPTIMAL THRESHOLDen
dc.subjectOPTIMISATIONSen
dc.subjectTHRESHOLD SEARCHESen
dc.subjectTONAL VARIANCE THRESHOLDen
dc.subjectTRANSPORT IMAGEen
dc.subjectDISCRETE COSINE TRANSFORMSen
dc.titleDetermining Thresholds for Optimal Adaptive Discrete Cosine Transformationen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/a17080366-
dc.identifier.scopus85202343882-
local.contributor.employeeKhanov A., Computer-Aided Design Department, St. Petersburg Electrotechnical University “LETI”, 5 Professora Popova St., Saint Petersburg, 197022, Russian Federationen
local.contributor.employeeShulzhenko A., Information Security Department, St. Petersburg Electrotechnical University “LETI”, 5 Professora Popova St., Saint Petersburg, 197022, Russian Federationen
local.contributor.employeeVoroshilova A., School of Public Administration and Entrepreneurship, Institute of Economics and Management, Ural Federal University Named after the First President of Russia B.N.Yeltsin, 51 Lenina Ave., Yekaterinburg, 620075, Russian Federationen
local.contributor.employeeZubarev A., Department of Electrical Engineering, St. Petersburg Electrotechnical University “LETI”, 5 Professora Popova St., Saint Petersburg, 197022, Russian Federationen
local.contributor.employeeKarimov T., Computer-Aided Design Department, St. Petersburg Electrotechnical University “LETI”, 5 Professora Popova St., Saint Petersburg, 197022, Russian Federationen
local.contributor.employeeFahmi S., Computer-Aided Design Department, St. Petersburg Electrotechnical University “LETI”, 5 Professora Popova St., Saint Petersburg, 197022, Russian Federationen
local.issue8-
local.volume17-
dc.identifier.wos001305433600001-
local.contributor.departmentComputer-Aided Design Department, St. Petersburg Electrotechnical University “LETI”, 5 Professora Popova St., Saint Petersburg, 197022, Russian Federationen
local.contributor.departmentInformation Security Department, St. Petersburg Electrotechnical University “LETI”, 5 Professora Popova St., Saint Petersburg, 197022, Russian Federationen
local.contributor.departmentSchool of Public Administration and Entrepreneurship, Institute of Economics and Management, Ural Federal University Named after the First President of Russia B.N.Yeltsin, 51 Lenina Ave., Yekaterinburg, 620075, Russian Federationen
local.contributor.departmentDepartment of Electrical Engineering, St. Petersburg Electrotechnical University “LETI”, 5 Professora Popova St., Saint Petersburg, 197022, Russian Federationen
local.identifier.pure62741728-
local.description.order366
local.identifier.eid2-s2.0-85202343882-
local.fund.rsf20-79-10334)
local.fund.rsfThis study was supported by the Russian Science Foundation (RSF), project 20-79-10334.
local.identifier.wosWOS:001305433600001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85202343882.pdf7,98 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.