Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141683
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorLarionova, V.en
dc.contributor.authorGoncharova, N.en
dc.contributor.authorDaineko, L.en
dc.contributor.authorKovalev, F.en
dc.date.accessioned2025-02-25T10:52:10Z-
dc.date.available2025-02-25T10:52:10Z-
dc.date.issued2024-
dc.identifier.citationLarionova, V., Goncharova, N., Daineko, L., & Kovalev, F. (2024). Внедрение адаптивного обучения в университете: кейс УрФУ реализации дисциплины «Иностранный язык». Education and Self Development, 19(1), 111-127. https://doi.org/10.26907/esd.19.1.09apa_pure
dc.identifier.issn1991-7740-
dc.identifier.issn1991-7740-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85190268076&doi=10.26907%2fesd.19.1.09&partnerID=40&md5=722e7a4f993e14a688c11a3f3e09b9601
dc.identifier.otherhttps://eandsdjournal.kpfu.ru/en/wp-content/uploads/sites/2/2024/03/ОиС_19_1-2024-111-127.pdfpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/141683-
dc.description.abstractDigitalization of learning environment and learning individualization are among the key global trends of education transformation. Digital tools allow designing individual learning path for each student, and improving learning efficiency by considering entrance levels of skills and knowledge, personal specifics of information perception, and speed of acquiring new knowledge. Learning analytics tools are used to analyze student digital footprint data in order to not only forecast student success of failure at the following stages of the course, but to design the most optimal path to desired learning results through the use of adaptive learning tools. The current research was aimed at developing and testing an adaptive learning method for teaching of a University foreign language course. The adaptive learning method uses analysis tools to form unique individual learning trajectory for each student. Comparative analysis of different learning models was performed using data for 5,154 students. Conclusions were made on the advantages of adaptive learning and mixed learning model with active teacher’s role in student success monitoring. Successful experience of testing the adaptive learning method for teaching foreign language demonstrates practical value of research results, and allows their further use for implementing adaptive learning in higher education institutions. © 2024, Kazan Federal University. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherKazan Federal Universityen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-by-nc-ndother
dc.sourceEducation and Self Development2
dc.sourceEducation and Self Developmenten
dc.subjectADAPTATIONen
dc.subjectADAPTIVE LEARNINGen
dc.subjectBLENDED LEARNINGen
dc.subjectDIGITALIZATION OF THE EDUCATIONAL PROCESSen
dc.subjectHIGHER EDUCATIONen
dc.subjectINDIVIDUAL EDUCATIONAL TRAJECTORIESen
dc.titleIntroduction of Adaptive Learning at the University: UrFU Case of Implementing “Foreign Language” Disciplineen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi65596595-
dc.identifier.doi10.26907/esd.19.1.09-
dc.identifier.scopus85190268076-
local.contributor.employeeLarionova V., Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, Russian Federationen
local.contributor.employeeGoncharova N., Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, Russian Federationen
local.contributor.employeeDaineko L., Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, Russian Federationen
local.contributor.employeeKovalev F., Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, Russian Federationen
local.description.firstpage111
local.description.lastpage127
local.issue1-
local.volume19-
local.contributor.departmentUral Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, Russian Federationen
local.identifier.pure55697866-
local.identifier.eid2-s2.0-85190268076-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85190268076.pdf537,92 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.