Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141528
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKulyabin, M.en
dc.contributor.authorZhdanov, A.en
dc.contributor.authorNikiforova, A.en
dc.contributor.authorStepichev, A.en
dc.contributor.authorKuznetsova, A.en
dc.contributor.authorRonkin, M.en
dc.contributor.authorBorisov, V.en
dc.contributor.authorBogachev, A.en
dc.contributor.authorKorotkich, S.en
dc.contributor.authorConstable, P. A.en
dc.contributor.authorMaier, A.en
dc.date.accessioned2025-02-25T10:47:18Z-
dc.date.available2025-02-25T10:47:18Z-
dc.date.issued2024-
dc.identifier.citationKulyabin, M., Zhdanov, A., Nikiforova, A., Stepichev, A., Kuznetsova, A., Ronkin, M., Borisov, V., Bogachev, A., Korotkich, S., Constable, P., & Maier, A. (2024). OCTDL: Optical Coherence Tomography Dataset for Image-Based Deep Learning Methods. Scientific Data, 11(1), [365]. https://doi.org/10.1038/s41597-024-03182-7apa_pure
dc.identifier.issn2052-4463-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access; Green Open Access3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85190294335&doi=10.1038%2fs41597-024-03182-7&partnerID=40&md5=446343c80129ebf50b950fa880ddf1571
dc.identifier.otherhttps://www.nature.com/articles/s41597-024-03182-7.pdfpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/141528-
dc.description.abstractOptical coherence tomography (OCT) is a non-invasive imaging technique with extensive clinical applications in ophthalmology. OCT enables the visualization of the retinal layers, playing a vital role in the early detection and monitoring of retinal diseases. OCT uses the principle of light wave interference to create detailed images of the retinal microstructures, making it a valuable tool for diagnosing ocular conditions. This work presents an open-access OCT dataset (OCTDL) comprising over 2000 OCT images labeled according to disease group and retinal pathology. The dataset consists of OCT records of patients with Age-related Macular Degeneration (AMD), Diabetic Macular Edema (DME), Epiretinal Membrane (ERM), Retinal Artery Occlusion (RAO), Retinal Vein Occlusion (RVO), and Vitreomacular Interface Disease (VID). The images were acquired with an Optovue Avanti RTVue XR using raster scanning protocols with dynamic scan length and image resolution. Each retinal b-scan was acquired by centering on the fovea and interpreted and cataloged by an experienced retinal specialist. In this work, we applied Deep Learning classification techniques to this new open-access dataset. © The Author(s) 2024.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherNature Researchen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.sourceScientific Data2
dc.sourceScientific Dataen
dc.subjectDEEP LEARNINGen
dc.subjectDIABETIC RETINOPATHYen
dc.subjectHUMANSen
dc.subjectMACULAR EDEMAen
dc.subjectRETINAen
dc.subjectRETINAL DISEASESen
dc.subjectTOMOGRAPHY, OPTICAL COHERENCEen
dc.subjectDEEP LEARNINGen
dc.subjectDIABETIC RETINOPATHYen
dc.subjectDIAGNOSTIC IMAGINGen
dc.subjectHUMANen
dc.subjectMACULAR EDEMAen
dc.subjectOPTICAL COHERENCE TOMOGRAPHYen
dc.subjectRETINAen
dc.subjectRETINA DISEASEen
dc.titleOCTDL: Optical Coherence Tomography Dataset for Image-Based Deep Learning Methodsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1038/s41597-024-03182-7-
dc.identifier.scopus85190294335-
local.contributor.employeeKulyabin M., Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 3, Erlangen, 91058, Germanyen
local.contributor.employeeZhdanov A., Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira, 32, Yekaterinburg, 620078, Russian Federationen
local.contributor.employeeNikiforova A., Ophthalmosurgery Clinic “Professorskaya Plus”, Vostochnaya, 30, Yekaterinburg, 620075, Russian Federation, Ural State Medical University, Repina, 3, Yekaterinburg, 620028, Russian Federationen
local.contributor.employeeStepichev A., Ophthalmosurgery Clinic “Professorskaya Plus”, Vostochnaya, 30, Yekaterinburg, 620075, Russian Federationen
local.contributor.employeeKuznetsova A., Ophthalmosurgery Clinic “Professorskaya Plus”, Vostochnaya, 30, Yekaterinburg, 620075, Russian Federationen
local.contributor.employeeRonkin M., Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira, 32, Yekaterinburg, 620078, Russian Federationen
local.contributor.employeeBorisov V., Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira, 32, Yekaterinburg, 620078, Russian Federationen
local.contributor.employeeBogachev A., Ophthalmosurgery Clinic “Professorskaya Plus”, Vostochnaya, 30, Yekaterinburg, 620075, Russian Federation, Ural State Medical University, Repina, 3, Yekaterinburg, 620028, Russian Federationen
local.contributor.employeeKorotkich S., Ophthalmosurgery Clinic “Professorskaya Plus”, Vostochnaya, 30, Yekaterinburg, 620075, Russian Federation, Ural State Medical University, Repina, 3, Yekaterinburg, 620028, Russian Federationen
local.contributor.employeeConstable P.A., Flinders University, College of Nursing and Health Sciences, Caring Futures Institute, Adelaide, SA 5042, Australiaen
local.contributor.employeeMaier A., Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 3, Erlangen, 91058, Germanyen
local.issue1-
local.volume11-
dc.identifier.wos001200765900008-
local.contributor.departmentPattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 3, Erlangen, 91058, Germanyen
local.contributor.departmentEngineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira, 32, Yekaterinburg, 620078, Russian Federationen
local.contributor.departmentOphthalmosurgery Clinic “Professorskaya Plus”, Vostochnaya, 30, Yekaterinburg, 620075, Russian Federationen
local.contributor.departmentUral State Medical University, Repina, 3, Yekaterinburg, 620028, Russian Federationen
local.contributor.departmentFlinders University, College of Nursing and Health Sciences, Caring Futures Institute, Adelaide, SA 5042, Australiaen
local.identifier.pure55699224-
local.description.order365
local.identifier.eid2-s2.0-85190294335-
local.identifier.wosWOS:001200765900008-
local.identifier.pmid38605088-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85190294335.pdf1,96 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.