Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141488
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAgbozo, E.en
dc.contributor.authorBalungu, D. M.en
dc.date.accessioned2025-02-25T10:47:05Z-
dc.date.available2025-02-25T10:47:05Z-
dc.date.issued2024-
dc.identifier.citationAgbozo, E., & Balungu, D. (2024). Liver Disease Classification - An XAI Approach to Biomedical AI. Informatica, 48(1), 79-90. https://doi.org/10.31449/inf.v48i1.4611apa_pure
dc.identifier.issn1854-3871-
dc.identifier.issn0350-5596-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85188317900&doi=10.31449%2finf.v48i1.4611&partnerID=40&md5=a021e1a72473d9df7ca91907e267d3f51
dc.identifier.otherhttps://www.informatica.si/index.php/informatica/article/download/4611/2741pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/141488-
dc.description.abstractExplosive amounts of biological and physiological data, including medical images, electroencephalograms, genomic information, and protein sequences, have been made available to us thanks to advances in biological and medical technologies. Understanding human health and disease is made easier by using this data for learning. Deep learning-based algorithms, which were developed from artificial neural networks, have significant potential for identifying patterns and extracting features from large amounts of complex data. However, these recent advancements involve blackbox models: algorithms that do not provide human-understandable explanations in support of their decisions. This limitation hampers the fairness, accountability and transparency of these models; the field of XAI tries to solve this problem providing human-understandable explanations for black-box models. This paper focuses on the requirement for XAI to be able to explain in detail the decisions made by an AI in a biomedical setting to the expert in the domain, e.g., the physician in the case of AI-based clinical decisions related to diagnosis, treatment, or prognosis of a disease. In this paper, we made use of the Indian Patient Liver Dataset (IPLD) collected from Andhra Pradesh region. The deep learning model with a 0.81 accuracy score (0.82 for the hyperparameter- tuned model) is built on Keras-Tensorflow and due to the imbalance in the target values, we integrated GANs as a means of oversampling the dataset. This study integrated the XAI concept of Shapley Values to shed light on the predictive results obtained by the liver disease detection model. © 2024 Slovene Society Informatika. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSlovene Society Informatikaen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.sourceInformatica2
dc.sourceInformatica (Slovenia)en
dc.subjectBIOMEDICAL SCIENCEen
dc.subjectDATA-DRIVEN DECISION MAKINGen
dc.subjectDEEP LEARNINGen
dc.subjectEXPLAINABLE AIen
dc.subjectPRESCRIPTIVE ANALYTICSen
dc.subjectSHAPLEY VALUESen
dc.subjectBIOELECTRIC PHENOMENAen
dc.subjectBIOMEDICAL ENGINEERINGen
dc.subjectDEEP LEARNINGen
dc.subjectDIAGNOSISen
dc.subjectDISEASESen
dc.subjectLEARNING SYSTEMSen
dc.subjectMEDICAL IMAGINGen
dc.subjectNEURAL NETWORKSen
dc.subjectBIOMEDICAL SCIENCEen
dc.subjectBLACK BOX MODELLINGen
dc.subjectDATA DRIVEN DECISIONen
dc.subjectDATA-DRIVEN DECISION MAKINGen
dc.subjectDECISIONS MAKINGSen
dc.subjectDEEP LEARNINGen
dc.subjectEXPLAINABLE AIen
dc.subjectLIVER DISEASEen
dc.subjectPRESCRIPTIVE ANALYTICen
dc.subjectSHAPLEY VALUEen
dc.subjectDECISION MAKINGen
dc.titleLiver Disease Classification - An XAI Approach to Biomedical AIen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.31449/inf.v48i1.4611-
dc.identifier.scopus85188317900-
local.contributor.employeeAgbozo E., Ural Federal University, Russian Federationen
local.contributor.employeeBalungu D.M., Ural Federal University, Russian Federationen
local.description.firstpage79
local.description.lastpage90
local.issue1-
local.volume48-
local.contributor.departmentUral Federal University, Russian Federationen
local.identifier.pure55300701-
local.identifier.eid2-s2.0-85188317900-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85188317900.pdf853,7 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.