Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141483
Название: Fourier spectral exponential time-differencing method for space-fractional generalized wave equations
Авторы: Mohammadi, S.
Fardi, M.
Ghasemi, M.
Hendy, A. S.
Zaky, M. A.
Дата публикации: 2024
Издатель: Springer
Библиографическое описание: Mohammadi, S., Fardi, M., Ghasemi, M., Hendy, A. S., & Zaky, M. (2024). Fourier spectral exponential time-differencing method for space-fractional generalized wave equations. Optical and Quantum Electronics, 56(7), [1254]. https://doi.org/10.1007/s11082-024-07004-3
Аннотация: This manuscript deals with a space-fractional generalized wave problem involving the fractional Laplacian operator of order α for 1<α≤2. We propose an accurate numerical method to solve the mentioned fractional wave problem. The problem is discretized in spatial direction by the Fourier spectral method, and in temporal direction by using the fourth-order exponential time-differencing Runge–Kutta method. One of the main features of this method is reducing the mentioned fractional wave model to an ODE by using the Fourier transform. Then the fourth-order exponential time-differencing Runge–Kutta method is used to solve this ODE. We define the discrete energy function and check the energy-conserving properties. The convergence of this method is proved. Various numerical experiments are conducted to confirm the accuracy and dependability of the suggested approach. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
Ключевые слова: CONVERGENCE
FOURIER SPECTRAL METHOD
FOURTH-ORDER EXPONENTIAL RUNGE–KUTTA METHOD
FRACTIONAL LAPLACIAN OPERATOR
GENERALIZED WAVE EQUATION
FOURIER TRANSFORMS
LAPLACE TRANSFORMS
MATHEMATICAL OPERATORS
NUMERICAL METHODS
ORDINARY DIFFERENTIAL EQUATIONS
RUNGE KUTTA METHODS
CONVERGENCE
EXPONENTIALS
FOURIER
FOURIER SPECTRAL METHOD
FOURTH-ORDER
FOURTH-ORDER EXPONENTIAL RUNGE–KUTTUM METHOD
FRACTIONAL LAPLACIAN OPERATORS
GENERALIZED WAVE EQUATION
SPECTRAL METHODS
WAVE PROBLEMS
WAVE EQUATIONS
URI: http://elar.urfu.ru/handle/10995/141483
Условия доступа: info:eu-repo/semantics/openAccess
cc-by
Идентификатор SCOPUS: 85197370784
Идентификатор WOS: 001258136300005
Идентификатор PURE: 59698670
ISSN: 1572-817X
DOI: 10.1007/s11082-024-07004-3
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85197370784.pdf647,52 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.