Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/139380
Название: AI Adoption for Steam Boiler Trip Prevention in Thermal Power Plants
Авторы: Ismail, F. B.
Al-Kayiem, H. H.
Kazem, H. A.
Дата публикации: 2024
Издатель: International Information and Engineering Technology Association (IIETA)
Ural Federal University
Уральский федеральный университет
Библиографическое описание: Firas Basim Ismail. AI Adoption for Steam Boiler Trip Prevention in Thermal Power Plants / Firas Basim Ismail, Hussain H. Al-Kayiem, Hussein A. Kazem // International Journal of Energy Production and Management. — 2024. — Vol. 9. Iss. 3. — P. 131-142.
Аннотация: This study introduces two advanced artificial intelligence systems designed to model and predict various boiler trips, playing a pivotal role in maintaining boilers' normal and safe functioning. These AI systems have been meticulously developed using MATLAB, thus offering sophisticated tools for diagnosing boiler trip occurrences. Real-world operational data from a coal-fired power plant, encompassing a comprehensive range of thirty-two operational variables tied to seven distinct boiler trips, was harnessed for these innovative systems' training, validation, and analysis. The first intelligent system capitalizes on a pure Artificial Neural Network (ANN) approach, leveraging the insights drawn from plant operators' decision-making processes concerning the key variables influencing each specific boiler trip. On the other hand, the second system takes a hybrid approach, incorporating Genetic Algorithms (GAs) to emulate the decision-making role of plant operators in identifying the most influential variables for each trip. Moreover, different topology combinations were explored to pinpoint the optimal diagnostic structure. The outcomes of our investigation underline the impressive capabilities of the ANN system, successfully detecting all six considered boiler trips either before or concurrently with the detection by the plant's control system. Furthermore, the hybrid system exhibited a marginal improvement of 0.1% in Root Mean Square error compared to the pure ANN system. These findings collectively emphasize the potential of AI-driven methods in enhancing early detection and prevention of boiler trips, thereby contributing to improved operational safety and efficiency.
Ключевые слова: ARTIFICIAL NEURAL NETWORK
BOILER TRIPS
COALFIRED POWER PLANTS
FAULT DETECTION AND DIAGNOSIS
GENETIC ALGORITHMS
INTELLIGENT MONITORING SYSTEMS
URI: http://elar.urfu.ru/handle/10995/139380
Идентификатор РИНЦ: https://elibrary.ru/item.asp?id=74522584
ISSN: 2056-3280
2056-3272
DOI: 10.18280/ijepm.090302
Сведения о поддержке: This research received support from Universiti Tenaga Nasional (UNITEN), Malaysia, through the Dato’ Low Tuck Kwong International Grant with project code 20238015DLTK.
Источники: International Journal of Energy Production and Management. 2024. Vol. 9. Iss. 3
Располагается в коллекциях:International Journal of Energy Production and Management

Файлы этого ресурса:
Файл Описание РазмерФормат 
ijepm_2024_v9_3_02.pdf1,83 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.