Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/137280
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAltayf, A.en
dc.contributor.authorTrabelsi, H.en
dc.contributor.authorHmad, Ji.en
dc.contributor.authorBenachaiba, Ch.en
dc.date.accessioned2024-08-29T09:57:04Z-
dc.date.available2024-08-29T09:57:04Z-
dc.date.issued2024-
dc.identifier.citationMulti-Criteria Decision-Making Approach to the Intelligent Selection of PV-BESS Based on Cost and Reliability / Atiyah Altayf, Hafedh Trabelsi, Jihed Hmad, Chellali Benachaiba // International Journal of Energy Production and Management. — 2024. — Vol. 9. Iss. 2. — P. 83-96.en
dc.identifier.issn2056-3280online
dc.identifier.issn2056-3272print
dc.identifier.urihttp://elar.urfu.ru/handle/10995/137280-
dc.descriptionReceived: 4 March 2024. Revised: 27 May 2024. Accepted: 20 June 2024. Available online: 30 June 2024.en
dc.description.abstractAddressing the challenge of meeting power demand with high reliability at low cost in Renewable energy (RE) generation is vital issue. The Autonomous Hybrid Energy Storage System (AHESS) to cover electrical deficit in Zigen clinic in southern Libya is introduced. It designed to produce 4 kW. The system comprises of photovoltaic (PV), Battery Energy Storage System (BESS) Flywheel Storage System (FESS) and Supercapacitance Storage System (SCSS). Six PV-BESS combinations, six criteria and three scenarios are studied. The research aim is to find the optimal PV-BESS combination based on low cost and high reliability. Multi-Criteria Decision Methods (MCDM) is implemented to select the optimal combination. The study utilizes Net Present Costs (NPC), Loss Power Supply Probability (LPSP), and Levelized Cost of Energy (LCOE) to assess each criterion. Six combinations of AHESS are implemented in MATLAB. Three MCDM methods are used to determine the optimal sizing of PV-BESS. Simulation results show that 30 PV panels and BESS 60 Ah are the optimal choices based on these results NPC = 19801 $/kWh, LPSP = 0.104 $/kWh, and LCOE = 0.032 $/kWh.en
dc.language.isoenen
dc.publisherInternational Information and Engineering Technology Association (IIETA)en
dc.publisherUral Federal Universityen
dc.publisherУральский федеральный университетru
dc.relation.ispartofInternational Journal of Energy Production and Management. 2024. Vol. 9. Iss. 2en
dc.subjectTOPSISen
dc.subjectARASen
dc.subjectSVNSen
dc.subjectRELIABILITYen
dc.subjectMCDMen
dc.subjectRENEWABLE ENERGYen
dc.subjectFLYWHEELen
dc.subjectINTELLIGENT SELECTIONen
dc.titleMulti-Criteria Decision-Making Approach to the Intelligent Selection of PV-BESS Based on Cost and Reliabilityen
dc.typeArticleen
dc.identifier.rsihttps://www.elibrary.ru/item.asp?id=68637090-
dc.identifier.doi10.18280/ijepm.090203-
local.description.firstpage83-
local.description.lastpage96-
local.issue83-96-
local.volume9-
local.contributorAltayf. Atiyahen
local.contributorTrabelsi, Hafedhen
local.contributorHmad, Jiheden
local.contributorBenachaiba, Chellalien
Располагается в коллекциях:International Journal of Energy Production and Management

Файлы этого ресурса:
Файл Описание РазмерФормат 
ijepm_2024_v9_2_03.pdf1,97 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.