Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/132616
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Easdown, D. | en |
dc.contributor.author | Sapir, M. V. | en |
dc.contributor.author | Volkov, M. V. | en |
dc.date.accessioned | 2024-04-24T12:38:28Z | - |
dc.date.available | 2024-04-24T12:38:28Z | - |
dc.date.issued | 2010 | - |
dc.identifier.citation | Easdown, D., Sapir, M. V., & Volkov, M. V. (2010). Periodic elements of the free idempotent generated semigroup on a biordered set. International Journal of Algebra and Computation, 20(02), 189–194. doi:10.1142/s0218196710005583 | apa |
dc.identifier.issn | 0218-1967 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.other | https://arxiv.org/pdf/0811.1789 | |
dc.identifier.other | 1 | duble |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/132616 | - |
dc.description.abstract | We show that every periodic element of the free idempotent generated semigroup on an arbitrary biordered set belongs to a subgroup of the semigroup. © 2010 World Scientific Publishing Company. | en |
dc.description.sponsorship | 2.1.1/3537; National Science Foundation, NSF: DMS-0700811; Bloom's Syndrome Foundation, BSF; Russian Foundation for Basic Research, RFBR: 09-01-12142 | en |
dc.description.sponsorship | The second author was supported in part by the NSF grant DMS-0700811 and by a BSF (USA-Israeli) grant. The third author acknowledges support from the Russian Foundation for Basic Research, grant 09-01-12142, and from the Federal Education Agency of Russia, grant 2.1.1/3537. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | World Scientific Pub Co Pte Ltd | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.rights | All Open Access, Green | scopus |
dc.source | International Journal of Algebra and Computation | 2 |
dc.source | International Journal of Algebra and Computation | en |
dc.subject | BIORDERED SET | en |
dc.subject | FREE IDEMPOTENT GENERATED SEMIGROUP | en |
dc.subject | GROUP ELEMENT | en |
dc.subject | IDEMPOTENT | en |
dc.subject | PERIODIC ELEMENT | en |
dc.subject | SEMIGROUP | en |
dc.title | Periodic elements of the free idempotent generated semigroup on a biordered set | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/submittedVersion | en |
dc.identifier.doi | 10.1142/S0218196710005583 | - |
dc.identifier.scopus | 77952005755 | - |
local.contributor.employee | Easdown, D., School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia | en |
local.contributor.employee | Sapir, M.V., Department of Mathematics, 1326 Stevenson Center, Vanderbilt University, Nashville, TN 37240, United States | en |
local.contributor.employee | Volkov, M.V., Department of Mathematics and Mechanics, Ural State University, Lenina 51, 620083 Ekaterinburg, Russian Federation | en |
local.description.firstpage | 189 | - |
local.description.lastpage | 194 | - |
local.issue | 2 | - |
local.volume | 20 | - |
dc.identifier.wos | 000277365300005 | - |
local.contributor.department | School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia | en |
local.contributor.department | Department of Mathematics, 1326 Stevenson Center, Vanderbilt University, Nashville, TN 37240, United States | en |
local.contributor.department | Department of Mathematics and Mechanics, Ural State University, Lenina 51, 620083 Ekaterinburg, Russian Federation | en |
local.identifier.pure | 7881295 | - |
local.identifier.eid | 2-s2.0-77952005755 | - |
local.identifier.wos | WOS:000277365300005 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-77952005755.pdf | 102,36 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.