Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/132612
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMilstein, G. N.en
dc.contributor.authorTretyakov, M. V.en
dc.date.accessioned2024-04-24T12:38:27Z-
dc.date.available2024-04-24T12:38:27Z-
dc.date.issued2009-
dc.identifier.citationMilstein, G. N., & Tretyakov, M. V. (2009a). Monte Carlo methods for backward equations in nonlinear filtering. Advances in Applied Probability, 41(1), 63–100. doi:10.1239/aap/1240319577apa
dc.identifier.issn0001-8678-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze, Green3
dc.identifier.otherhttps://www.cambridge.org/core/services/aop-cambridge-core/content/view/7632DC7A79D939567D9BE6DCBF9018F9/S0001867800003141a.pdf/div-class-title-monte-carlo-methods-for-backward-equations-in-nonlinear-filtering-div.pdfpdf
dc.identifier.other1duble
dc.identifier.urihttp://elar.urfu.ru/handle/10995/132612-
dc.description.abstractWe consider Monte Carlo methods for the classical nonlinear filtering problem. The first method is based on a backward pathwise filtering equation and the second method is related to a backward linear stochastic partial differential equation. We study convergence of the proposed numerical algorithms.The considered methods have such advantages as a capability in principle to solve filtering problems of large dimensionality, reliable error control, and recurrency. Their efficiency is achieved due to the numerical procedures which use effective numerical schemes and variance reduction techniques. The results obtained are supported by numerical experiments. © Applied Probability Trust 2009.en
dc.description.sponsorshipEngineering and Physical Sciences Research Council, EPSRC: EP/D049792/1en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherCambridge University Press (CUP)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightsAll Open Access, Bronze, Greenscopus
dc.sourceAdvances in Applied Probability2
dc.sourceAdvances in Applied Probabilityen
dc.subjectKALLIANPUR-STRIEBEL FORMULAen
dc.subjectMEAN-SQUARE AND WEAK NUMERICAL METHODSen
dc.subjectMONTE CARLO TECHNIQUEen
dc.subjectPATHWISE FILTERING EQUATIONen
dc.subjectSTOCHASTIC PARTIAL DIFFERENTIAL QUATIONen
dc.subjectKALLIANPUR-STRIEBEL FORMULAen
dc.subjectMEAN-SQUARE AND WEAK NUMERICAL METHODSen
dc.subjectMONTE CARLO TECHNIQUEen
dc.subjectPATHWISE FILTERING EQUATIONen
dc.subjectSTOCHASTIC PARTIAL DIFFERENTIAL QUATIONen
dc.subjectCONVERGENCE OF NUMERICAL METHODSen
dc.subjectNONLINEAR EQUATIONSen
dc.subjectNONLINEAR FILTERINGen
dc.subjectNUMBER THEORYen
dc.subjectPARTIAL DIFFERENTIAL EQUATIONSen
dc.subjectRANDOM PROCESSESen
dc.subjectSTOCHASTIC PROGRAMMINGen
dc.subjectMONTE CARLO METHODSen
dc.titleMonte Carlo methods for backward equations in nonlinear filteringen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1239/aap/1240319577-
dc.identifier.scopus67649657680-
local.contributor.employeeMilstein, G.N., Ural State University, Lenin Street 51, 620083 Ekaterinburg, Russian Federationen
local.contributor.employeeTretyakov, M.V., University of Leicester, Department of Mathematics, Leicester LE1 7RH, United Kingdom, Department of Mathematics, University of Leicester, Leicester LE1 7RH, United Kingdomen
local.description.firstpage63-
local.description.lastpage100-
local.issue1-
local.volume41-
dc.identifier.wos000265582700004-
local.contributor.departmentUral State University, Lenin Street 51, 620083 Ekaterinburg, Russian Federationen
local.contributor.departmentUniversity of Leicester, Department of Mathematics, Leicester LE1 7RH, United Kingdomen
local.contributor.departmentDepartment of Mathematics, University of Leicester, Leicester LE1 7RH, United Kingdomen
local.identifier.pure38656498-
local.identifier.eid2-s2.0-67649657680-
local.identifier.wosWOS:000265582700004-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-67649657680.pdf292,96 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.