Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/132485
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKamalov, F.en
dc.contributor.authorRajab, K.en
dc.contributor.authorCherukuri, A. K.en
dc.contributor.authorElnagar, A.en
dc.contributor.authorSafaraliev, M.en
dc.date.accessioned2024-04-22T15:53:44Z-
dc.date.available2024-04-22T15:53:44Z-
dc.date.issued2022-
dc.identifier.citationKamalov, F, Rajab, K, Cherukuri, AK, Elnagar, A & Safaraliev, M 2022, 'Deep learning for Covid-19 forecasting: State-of-the-art review', Neurocomputing, Том. 511, стр. 142-154. https://doi.org/10.1016/j.neucom.2022.09.005harvard_pure
dc.identifier.citationKamalov, F., Rajab, K., Cherukuri, A. K., Elnagar, A., & Safaraliev, M. (2022). Deep learning for Covid-19 forecasting: State-of-the-art review. Neurocomputing, 511, 142-154. https://doi.org/10.1016/j.neucom.2022.09.005apa_pure
dc.identifier.issn0925-2312
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Green Open Access3
dc.identifier.otherhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC94541521
dc.identifier.otherhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454152pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/132485-
dc.description.abstractThe Covid-19 pandemic has galvanized scientists to apply machine learning methods to help combat the crisis. Despite the significant amount of research there exists no comprehensive survey devoted specifically to examining deep learning methods for Covid-19 forecasting. In this paper, we fill the gap in the literature by reviewing and analyzing the current studies that use deep learning for Covid-19 forecasting. In our review, all published papers and preprints, discoverable through Google Scholar, for the period from Apr 1, 2020 to Feb 20, 2022 which describe deep learning approaches to forecasting Covid-19 were considered. Our search identified 152 studies, of which 53 passed the initial quality screening and were included in our survey. We propose a model-based taxonomy to categorize the literature. We describe each model and highlight its performance. Finally, the deficiencies of the existing approaches are identified and the necessary improvements for future research are elucidated. The study provides a gateway for researchers who are interested in forecasting Covid-19 using deep learning. © 2022 Elsevier B.V.en
dc.description.sponsorshipDunarea de Jos” University of Galatien
dc.description.sponsorshipUmm Al-Qura Univer-sityen
dc.description.sponsorshipUmm Al-Qura University, UQU, (22UQU4300274DSR01)en
dc.description.sponsorshipDeanship of Scientific Research, King Saud Universityen
dc.description.sponsorshipFunding text 1: Deanship of Scientific Research at Umm Al-Qura University supported this work by Grant Code: (22UQU4300274DSR01).en
dc.description.sponsorshipFunding text 2: Conceptualization, H.O.T., H.M.H.Z., A.M.A.M., G.A. and S.A.M.I.en
dc.description.sponsorshipmethodology, F.T.A. and H.O.T.en
dc.description.sponsorshipsoftware, D.S.B., A.H.A., H.M.H.Z. and A.E.en
dc.description.sponsorshipvalidation, S.A.M.I., A.M.A.M., D.S.B., D.E.A., W.E., Y.S.R. and A.E.en
dc.description.sponsorshipformal analysis, H.M.H.Z., and F.T.A.en
dc.description.sponsorshipinvestigation, H.O.T., W.E., and G.A.en
dc.description.sponsorshipresources, F.T.A. and D.S.B.en
dc.description.sponsorshipdata curation, S.A.M.I., A.H.A. and A.E.en
dc.description.sponsorshipwriting—original draft preparation, Y.S.R., D.E.A., H.O.T., D.E.A., F.T.A. and A.E.en
dc.description.sponsorshipwriting—review and editing, H.M.H.Z., S.I, A.M.A.M., A.H.A. and A.E.en
dc.description.sponsorshipvisualization, W.E. and A.E.en
dc.description.sponsorshipsupervision, H.M.H.Z., W.E., Y.S.R. and D.S.B.en
dc.description.sponsorshipproject administration, H.O.T., A.E., Y.S.R. and S.A.M.I.en
dc.description.sponsorshipfunding acquisition A.E. (The APC was funded by “Dunarea de Jos” University of Galati, Romania). All authors have read and agreed to the published version of the manuscript.en
dc.description.sponsorshipFunding text 3: The authors would like to thank the Deanship of Scientific Research at the Umm Al-Qura Univer-sity for supporting this work by grant code (22UQU4300274DSR01). The APC was covered by “Dunarea de Jos” University of Galati, Romania.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.sourceNeurocomputing2
dc.sourceNeurocomputingen
dc.subjectCNNen
dc.subjectCOVID-19en
dc.subjectDEEP LEARNINGen
dc.subjectFORECASTINGen
dc.subjectGNNen
dc.subjectLSTMen
dc.subjectMLPen
dc.subjectSURVEYen
dc.subjectFORECASTINGen
dc.subjectLEARNING SYSTEMSen
dc.subjectLONG SHORT-TERM MEMORYen
dc.subject'CURRENTen
dc.subjectCOVID-19en
dc.subjectDEEP LEARNINGen
dc.subjectGNNen
dc.subjectGOOGLE SCHOLARen
dc.subjectLEARNING METHODSen
dc.subjectLSTMen
dc.subjectMACHINE LEARNING METHODSen
dc.subjectMLPen
dc.subjectSTATE-OF-THE ART REVIEWSen
dc.subjectARTICLEen
dc.subjectCONVOLUTIONAL NEURAL NETWORKen
dc.subjectCORONAVIRUS DISEASE 2019en
dc.subjectDEEP LEARNINGen
dc.subjectFORECASTINGen
dc.subjectGRADIENT BOOSTINGen
dc.subjectGRAPH NEURAL NETWORKen
dc.subjectHUMANen
dc.subjectK NEAREST NEIGHBORen
dc.subjectLONG SHORT TERM MEMORY NETWORKen
dc.subjectMATHEMATICAL MODELen
dc.subjectMULTILAYER PERCEPTRONen
dc.subjectRANDOM FORESTen
dc.subjectRECURRENT NEURAL NETWORKen
dc.subjectSUPPORT VECTOR MACHINEen
dc.subjectSUSCEPTIBLE EXPOSED INFECTIOUS RECOVERED MODELen
dc.subjectTAXONOMYen
dc.subjectSURVEYSen
dc.titleDeep learning for Covid-19 forecasting: State-of-the-art review.en
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.neucom.2022.09.005-
dc.identifier.scopus85138086201-
local.contributor.employeeKamalov F., Canadian University Dubai, United Arab Emiratesen
local.contributor.employeeRajab K., Najran University, Saudi Arabiaen
local.contributor.employeeCherukuri A.K., Vellore Institute of Technology, Indiaen
local.contributor.employeeElnagar A., University of Sharjah, United Arab Emiratesen
local.contributor.employeeSafaraliev M., Ural Federal University, Russian Federationen
local.description.firstpage142
local.description.lastpage154
local.issue24
local.volume511
dc.identifier.wos000871948700012-
local.contributor.departmentCanadian University Dubai, United Arab Emiratesen
local.contributor.departmentNajran University, Saudi Arabiaen
local.contributor.departmentVellore Institute of Technology, Indiaen
local.contributor.departmentUniversity of Sharjah, United Arab Emiratesen
local.contributor.departmentUral Federal University, Russian Federationen
local.identifier.pured4874f9c-aaa8-473f-b460-4e1dc09440ecuuid
local.identifier.pure30981306-
local.description.order4095
local.identifier.eid2-s2.0-85138086201-
local.identifier.wosWOS:000871948700012-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85138086201.pdf924,46 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.